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THE NUMBER OF CONJUGACY CLASSES

Michael Reid

Let G be a finite group, |G| its order, and s the number of its conjugacy classes. Burnside [1, p. 295]
uses the theory of representations of finite groups to prove that if |G| is odd, then |G| ≡ s mod 16. He also
gives as an exercise [1, p. 320] that if every prime p dividing |G| satisfies p ≡ 1 mod 4, then |G| ≡ s mod 32.
Poonen [4] gives an elementary proof (i.e. without using representation theory) of a generalization of the latter
statement. Specifically, Poonen shows that if m > 1, and every prime p dividing |G| satisfies p ≡ 1 mod m,
then |G| ≡ s mod 2m2.

The purpose of this note is to prove another congruence along the same lines, and to show we have obtained
the strongest possible results. We introduce some notation. For m ≥ 1, let Gm denote the collection of all
finite groups G such that every prime p dividing |G| satisfies p ≡ 1 mod m. Let B(m) denote the greatest
common divisor of |G| − s, over all G in Gm. Then the above results are reformulated as:

Theorem. (Burnside) B(2) is divisible by 16.

Theorem. (Poonen) If m > 1, then B(m) is divisible by 2m2.

These results are strengthened slightly by the following observation.

Remark. If m > 1, then any prime p ≡ 1 mod m is necessarily odd. Therefore Gm ⊆ G2, so B(m) is
divisible by B(2), and thus by 16.

If m > 2, we can say slightly more about B(m). In this case, we obtain the desired result under a weaker
hypothesis. This result is an easy exercise using representation theory; see for example [5]. Here we give an
elementary proof, using Poonen’s technique.

Proposition. If |G| is not divisible by 3, then |G| ≡ s mod 3.

Proof. Poonen [4] shows that the set A = {(x, y) ∈ G2 |xy 6= yx} has cardinality |G|(|G|− s). The set A is
clearly in bijection with B = {(x, y, z) ∈ G3 |xyz = 1 6= zyx} by (x, y) 7→ (x, y, (xy)−1). Now B supports the
order 3 permutation (x, y, z) 7→ (y, z, x), which has no fixed points. Therefore |B| = |G|(|G| − s) is divisible
by 3, from which the proposition follows. �

Corollary. If m > 2, then B(m) is divisible by 3.

The corollary, along with the theorems of Burnside and Poonen, gives the strongest possible results about
B(m). This is the content of the following theorem.

Theorem. If m > 2, then B(m) is the least common multiple of 48 and 2m2. Also B(2) = 16 and B(1) = 1.

Proof. For m > 2, let B′(m) = LCM(48, 2m2). The corollary and the theorems of Burnside and Poonen
show that 3, 16 and 2m2 each divide B(m). Therefore, their least common multiple, B′(m), divides B(m).
For a prime p, let Gp denote the non-abelian group

Gp =

{(

a b
0 1

) ∣

∣

∣

∣

a, b ∈ Z/p2Z and a ≡ 1 mod p

}
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of order p3. The center of Gp is

{(

a b
0 1

)

∈ Gp

∣

∣

∣

∣

a ≡ 1 mod p2 and b ≡ 0 mod p

}

,

which has order p. The reader can easily verify that the conjugacy class of a non-central element

(

a b
0 1

)

is

{(

a′ b′

0 1

)

∈ Gp

∣

∣

∣

∣

a′ ≡ a mod p2 and b′ ≡ b mod p

}

,

which has size p. Therefore Gp has sp = p2 + p− 1 conjugacy classes, p of size 1 and p2 − 1 of size p. Note
also that |Gp|− sp = (p+1)(p− 1)2. For a prime q, let vq denote the q-adic valuation, so vq(n) is the largest
integer e such that qe divides n. We will compare vq(B(m)) and vq(B

′(m)). Consider several cases.

Case 1. Suppose q ∤ m and q 6= 2, 3. By Dirichlet’s theorem on primes in arithmetic progressions
(and the Chinese remainder theorem), there is a prime p with p ≡ 1 mod m and p ≡ 2 mod q. Then
vq(B(m)) ≤ vq(|Gp| − sp) = vq((p+ 1)(p− 1)2) = 0 = vq(B

′(m)).

Case 2. Suppose 3 = q ∤ m. There is a prime p with p ≡ 1 mod m and p ≡ 2 mod 9. Then v3(B(m)) ≤
v3((p+ 1)(p− 1)2) = 1 = v3(B

′(m)).

Case 3. Suppose 2 = q ∤ m. There is a prime p with p ≡ 1 mod m and p ≡ 3 mod 8. Then v2(B(m)) ≤
v2((p+ 1)(p− 1)2) = 4 = v2(B

′(m)).

Case 4. Suppose 2 6= q|m. Let e = vq(m). There is a prime p with p ≡ 1 mod m and p ≡ 1+ qe mod qe+1.
Then vq(B(m)) ≤ vq((p+ 1)(p− 1)2) = 2e = vq(B

′(m)).

Case 5. Suppose 2 = q|m. Let e = v2(m). If e = 1, there is a prime p with p ≡ 1 mod m and p ≡ 3 mod 8.
Then v2(B(m)) ≤ v2((p + 1)(p− 1)2) = 4 = v2(B

′(m)). If e ≥ 2, there is a prime p with p ≡ 1 mod m and
p ≡ 1 + 2e mod 2e+1. Then v2(B(m)) ≤ v2((p+ 1)(p− 1)2) = 2e+ 1 = v2(B

′(m)).

This shows that for every prime q, we have vq(B(m)) ≤ vq(B
′(m)). Therefore B(m) = B′(m), so the first

statement is proved. For the second statement, note that B(2) divides |G3| − s3 = 16, so B(2) = 16. Also,
B(1) divides both |G3| − s3 = 16 and |G2| − s2 = 3, so B(1) = 1. �

Several authors (e.g. [2, 3, 5]) have considered a similar problem with a different type of hypothesis,
namely that the order of G is divisible only by some finite set of primes, p1, p2, . . . , pr. Hirsch [2] also
gives an elementary, but more complicated proof of our Proposition. The strongest result under this type of
hypothesis appears to be Mann’s theorem [3, p. 83], from which it follows easily that LCM(48, 2m2) divides
B(m) for m > 2. It would be interesting to know if Mann’s result is the best possible under this type of
hypothesis.
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