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Abstract. We investigate the existence of α-valuations and sequential
labelings for a variety of grids in the plane, on a cylinder and on a torus.

1. Introduction. A connected graph with v vertices and e edges is called
graceful if it is possible to label the vertices x with distinct integers f(x) in
{0, 1, 2, . . . , e} so that when each edge, xy, is labeled |f(x)− f(y)|, the re-
sulting edge labels are distinct (and thus form the entire set {1, 2, 3, . . . , e}).

A graceful labeling f is called an α-valuation if there is an integer k
such that for any edge xy, either f(x) ≤ k < f(y) or f(y) ≤ k < f(x).
Since some edge xy is labeled |f(x)− f(y)| = 1, the integer k is uniquely
determined by the α-valuation, and is said to characterize the labeling.

Also, if f is an α-valuation of the graph G, characterized by k, then
note that G is bipartite on the vertex sets X = {x ∈ V | f(x) > k} and
Y = {x ∈ V | f(x) ≤ k}. This notation will be used throughout the paper.

Graham and Sloane [7] call a connected graph with v vertices and e
edges harmonious if its vertices x may be labeled with distinct elements
f(x) of Z/eZ so that when edge xy is labeled f(x) + f(y), the resulting
edge labels are distinct and thus form the entire set Z/eZ. (If the graph is
a tree, i.e. v = e + 1, then one vertex label may be repeated.)

Grace [5,6] calls a connected graph with v vertices and e edges sequential
if its vertices x may be labeled with distinct integers f(x) in {0, 1, . . . , e−1}
so that when edge xy is labeled f(x) + f(y), the resulting edge labels form
a block of e consecutive integers. If the graph is a tree, then e may be used
as a vertex label. Any sequential labeling induces a harmonious labeling
by reducing the labels modulo e. Although it seems likely that there are
harmonious graphs which are not sequential, there is no known example of
such a graph.
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In this paper, we find α-valuations and sequential labelings for a variety
of graphs of the form Pm ×Pn, Cm ×Pn and Cm ×Cn, where Pn is a path
on n vertices, and Cn is a cycle on n vertices (n > 2). Such graphs can
be represented as grids in the plane, on a cylinder, or on a torus. Table 1
summarizes our results. Note that all negative results for α-valuations
follow simply because these graphs are not bipartite.

Table 1: Summary of Results

Graph α-valuation sequential

P2m × P2n Yes Yes∗

P2m × P2n+1 Yes Yes
P2m+1 × P2n+1 Yes Yes

C4m × P2n Yes Yes∗

C4m × P2n+1 Yes Yes
C4m+2 × P2n Yes Yes
C4m+2 × P2n+1

C2m+1 × Pn No Yes

C4m × C4n Yes †
C4m × C4n+2 Yes †
C4m × C2n+1 No
C4m+2 × C4n+2

C4m+2 × C2n+1 No No
C2m+1 × C2n+1 No No

* except for (m,n) = (1, 1)
† C4 × C2n is sequential for n > 1

Some work with grids has already been done. Graham and Sloane [7]
proved that all C2m+1 ×Pn are harmonious and Grace [5] has shown these
graphs are also sequential.

Maheo [9] has shown that the graphs P2 × Pn and C4 × Pn have α-
valuations, Graham and Sloane [7] have shown that P2×Pn are harmonious,
Frucht and Gallian [1] have shown that P2 × C2n have α-valuations and
P2 × C2n+1 are graceful, Gallian, Prout and Winters [4] have shown that
P2 × C2n are sequential for n > 2, and Huang and Skiena [8] have shown
that C4m+2 × P2n+1 are graceful.

In his survey paper on graph labelings, Gallian [2] opined that among
the open problems on graph labeling he considered those involving grids
to be the most attractive. Gallian again singled out these problems for
attention in the Unsolved Problems section of the American Mathematical

Monthly [3].



2. Relationship between α-valuations and sequential labelings.

In [5,6], Grace uses the following construction to prove the corollary to this
useful theorem.

Theorem 2.1. If the graph G, with e edges, has an α-valuation, then the
vertices x of G can be labeled with distinct integers f(x) in {0, 1, 2, . . . , e}
so that the set of induced labels on edges xy, {f(x) + f(y)} is a block of e
consecutive integers.

Proof. Suppose g is an α-valuation of G, characterized by k. Recall that
G is bipartite on X = {x | g(x) > k} and Y = {x | g(x) ≤ k}. Define f by

f(x) =

{

g(x) if x ∈ X
k − g(x) if x ∈ Y

Note that f is injective. Also, if xy is an edge, x ∈ X, y ∈ Y , then

f(x) + f(y) = g(x) + k − g(y) = k + |g(x)− g(y)| ,

so the set of edge labels is {k + 1, k + 2, . . . , k + e} as desired. ✷

Corollary 2.2. If a tree has an α-valuation, then it is sequential.

2.3. Bipartite label-shifting. Let G be a graph that is bipartite on X
and Y , and suppose we have some labeling, f , of the vertices of G, that
induces the labels f(x) + f(y) on the edges xy. If we define a new labeling
by incrementing the labels of vertices in X by a and incrementing the labels
of vertices in Y by b, the induced edge labels have all been incremented by
a + b. Thus, this type of change does not affect whether or not the edge
labels are distinct consecutive integers (or if they form a complete residue
system modulo e), but it may well affect whether or not the vertex labels
are distinct and in the desired range.
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This construction, when used together with Grace’s construction, can

be a powerful tool. For example, start with an α-valuation of C
(2)
4 , the

one point union of two copies of C4, apply Grace’s construction, and then
subtract 2 from each boxed vertex to get a sequential labeling, as above.

3. Planar Grids. We begin with a simple remark that has far-reaching
applications. Suppose the graph G has an α-valuation characterized by
k. Recall G is then bipartite on the vertex sets X and Y , as defined in
Section 1. If we add x to the labels of vertices in X , and y to the labels
of vertices in Y , then the edge labels become the integers from x − y + 1
through x− y + e (if x ≥ y).

Theorem 3.1. The graph Pm × Pn has an α-valuation.

Proof. Let J denote the α-valuation of Pm

0,m− 1, 1,m− 2, 2,m− 3, . . .

and letR(x) be the labeling obtained from J by adding (2mn−2m−n+1)−x
to the higher labels, x to the lower labels. Let K = (m− 1)− J denote the
α-valuation of Pm

m− 1, 0,m− 2, 1,m− 3, 2, . . .

and let S(x) be the labeling obtained from K by adding (2mn− 2m− n+
2)− x to the higher labels, and x to the lower labels.

Now, consider Pm × Pn to be n juxtaposed copies of Pm. Label the
(2k + 1)st copy of Pm with R(k(2m − 1)), the 2kth copy with S(k(2m −
1) + (1 −m)).

The edge labels of the rth copy of Pm are the integers from (2mn−n+
1)− r(2m− 1) through (2mn−n+1)− r(2m− 1)+ (m− 2), and the labels
of the edges joining the rth and (r+1)st copies of Pm are the integers from
(2mn−n+1)−(r+1)(2m−1)+(m−1) through (2mn−n+1)−r(2m−1)−1.
It follows that this is a graceful labeling, and inspection shows that it is
also an α-valuation. ✷

This labeling is particularly nice, as the edges are labeled consecutively.
See labelings of P4 × P5 and P4 × P6 below:



α-valuation of P4 × P5

30 5 23 12 16

1 27 8 20 15

31 4 24 11 17

0 28 7 21 14

α-valuation of P4 × P6

37 5 30 12 23 19

1 34 8 27 15 20

38 4 31 11 24 18

0 35 7 28 14 21

Also nice is the following corollary.

Corollary 3.2. The graph P2m × P2n+1 is sequential.

Proof. Apply Grace’s construction to the α-valuation given above of
P2m × P2n+1, and subtract 2m from the higher vertex labels. A routine
verification shows that this is indeed a sequential labeling. ✷

Again, the edges are labeled consecutively; we illustrate for P4 × P5

below:

α-valuation
of P4 × P5

30 5 23 12 16

1 27 8 20 15

31 4 24 11 17

0 28 7 21 14

sequential labeling
of P4 × P5

26 10 19 3 12

14 23 7 16 0

27 11 20 4 13

15 24 8 17 1

A slight variation will give a sequential labeling of P2m×P2n. However,
it is easy to see that P2 ×P2 = C4 is not harmonious. The following result
shows that this is the only exception among these graphs.

Theorem 3.3. If n > 1, then P2m × P2n has a sequential labeling.

Proof. Start with the α-valuation of P2m×P2n given in 3.1, and subtract
1 from each vertex label of the 2nth copy of P2m. This doesn’t change any
edge labels of the 2nth copy of P2m, and permutes adjacent pairs of edges
joining the last two copies of P2m. Since no other edge labels are affected,
this is also an α-valuation (characterized by a different k).

Now apply Grace’s construction, and subtract 2m from the higher vertex
labels. It is straightforward to check that this is a sequential labeling. ✷

We illustrate the process for P6 × P4:



α-valuation
of P6 × P4

36 8 25 19

2 31 13 20

37 7 26 18

1 32 12 21

38 6 27 17

0 33 11 22

new α-valuation
of P6 × P4

36 8 25 18

2 31 13 19

37 7 26 17

1 32 12 20

38 6 27 16

0 33 11 21

sequential labeling
of P6 × P4

30 10 19 0

16 25 5 13

31 11 20 1

17 26 6 14

32 12 21 2

18 27 7 15

Theorem 3.4. The graph P2m+1 × P2n+1 has a sequential labeling.

Proof. Partition the vertices of P2m+1 × P2n+1 into the sets T , U1, U2,
U3, . . . , Um and V as shown.
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Label the vertices of T with x−3n, x−3n+1, x−3n+2, . . . , x−2n−1,
where x = 4mn+m+ 2n. Label U1 as follows



0 2 4 2n
x 1 x+ 2 3 x+ 4 · · · 2n− 1 x+ 2n

x+ 1 x+ 3 x+ 2n− 1

and label Ui by adding (i−1)(4n+1) to corresponding vertices of U1. Label
the vertices of V with x− 2n, x− 2n+ 1, x− 2n+ 2, . . . , x− n.

The edges of the graph are then labeled consecutively in a zigzag pat-
tern, which is illustrated by P5 × P7. ✷

sequential labeling of P5 × P7

26 46 27 48 28 50 29

45 14 47 16 49 18 51

13 33 15 35 17 37 19

32 1 34 3 36 5 38

0 23 2 24 4 25 6

Corollary 3.5. All grids Pm × Pn except P2 × P2 are sequential.

4. Cylindrical Grids. Let L represent the α-labeling of C4m: 0, 4m,
1, 4m− 1, . . . ,m, 3m− 1,m+1, . . . , 2m. Note that the label 3m is unused.
Suppose X and Y are the two vertex-subsets of the bipartite graph C4m (as
described above). Define L(x, y) to be the vertex-labeling obtained from L
by adding x to each label in X and y to each label in Y . Define L(x, y; r) to
be the labeling obtained from L(x, y) by rotating the labeling by r vertices
(to the right, i.e. a, b, c, d rotated through 1 vertex yields d, a, b, c). Notice
that the edge-labels of L(x, y; r) range from (1 + x− y) to (4m+ x− y).

Theorem 4.1. The graph C4m × Pn has an α-valuation.

Proof. Label the n copies of C4m with: L(8mn−8m, 0; 0), L(8mn−12m,
4m; 1), L(8mn− 16m, 8m; 0), . . . , L(4mn− 4m, 4mn− 4m; k), where k = 0
if n is odd, and k = 1 if n is even. Notice that every second labeling is
rotated by 1, and in each case x is decreased by 4m while y is increased
by 4m. The ith copy of C4m includes the edges (8mn− 8mi) + 1 through
(8mn− 8mi) + 4m. The edges that join the ith and (i+ 1)st copies of C4m

include the edges (8mn−8mi)+(4m+1) through (8mn−8mi)+8m. Thus
the edges of the graph cover the integers from 1 to (8mn− 4m) as desired.
By inspection, the labeling is an α-valuation. ✷

The labeling of C4 × P5 is shown:



α-valuation of C4 × P5

34 5 26 13 18

1 32 9 24 17

36 4 28 12 20

0 30 8 22 16

The following result employs an important technique that will be used
several times.

Theorem 4.2. The graph C4m × P2n+1 has a sequential labeling.

Proof. Start with the α-valuation given in 3.1 of P2n+1×P4m. Transpose
the graph and its labeling, as though it were a matrix. This gives an
α-valuation of P4m × P2n+1. Now apply Grace’s construction, subtract
8mn+2m−n from the higher labels, and add 8mn+2m− 3n to the lower
labels to get a sequential labeling of P4m × P2n+1.

Connect the 4mth copy of P2n+1 to the first, so our graph becomes C4m×
P2n+1. These new edges have the same labels as those edges connecting
the 2mth and (2m+ 1)st copy of P2n+1.

Let U denote the first 2m copies of P2n+1 and the edges between them.
The labels of edges in U are those integers from A through B. The labels of
edges with one vertex in U are the integers from A− 2n− 1 through A− 1,
each occurring twice. Now add 2n + 1 to the higher labels in U . (Since
P4m × P2n+1 is not a tree, and since we’ve added 2n + 1 edges to it, the
vertex labels stay in range for a sequential labeling.) The edges contained
in U now have labels A+ 2n+ 1 through B + 2n+ 1, and of the two edges
that used to have the same label, one has been increased by 2n + 1, the
other unchanged. Therefore, the edges with one vertex in U now have labels
A− 2n− 1 through A+ 2n, and we have a sequential labeling. ✷

α-valuation
P4 × P5

18 14 17 15 16

9 22 10 21 11

27 5 26 6 25

0 31 1 30 2

sequential labeling
of P4 × P5

2 13 1 12 0

18 6 17 5 16

11 22 10 21 9

27 15 26 14 25

sequential labeling
of C4 × P5

2 13 1 12 0

18 6 17 5 16

11 27 10 26 9

32 15 31 14 30

The same technique is used for the following result.



Theorem 4.3. If m > 1, then C4m × P2n is sequential.

Proof. Start with the α-valuation of P2n×P4m given in 3.1, and transpose
it, as in 4.2, to get an α-valuation of P4m ×P2n. Add 1 to each label of the
(4m− 1)st copy of P2n. Similar to the proof of 3.3, the only affected edge
labels are those joining the (4m − 2)nd and (4m− 1)st copies of P2n, and
those joining the (4m−1)st and 4mth copies. Furthermore, these labels are
permuted in adjacent pairs, so this is still an α-valuation.

Now apply Grace’s construction, and subtract 2n from the higher labels
to get a sequential labeling. Join the first copy of P2n to the last, to get
C4m × P2n, and add 2n to the higher labels of the first 2m copies of P2n.
As before, this gives a sequential labeling of C4m × P2n. ✷

α-valuation
of P8 × P4

28 25 27 26

21 31 22 30

35 18 34 19

14 38 15 37

42 11 41 12

7 45 8 44

49 4 48 5

0 52 1 51

new α-valuation
of P8 × P4

28 25 27 26

22 32 23 31

35 18 34 19

14 38 15 37

42 11 41 12

7 45 8 44

49 4 48 5

0 52 1 51

sequential labeling
of P8 × P4

24 1 23 0

4 28 3 27

31 8 30 7

12 34 11 33

38 15 37 14

19 41 18 40

45 22 44 21

26 48 25 47

sequential labeling
of C8 × P4

24 1 23 0

4 28 3 27

31 8 30 7

12 34 11 33

42 15 41 14

19 45 18 44

49 22 48 21

26 52 25 51

In light of Grace’s construction, it is not surprising to find that this
technique also comes in handy in the realm of α-valuations.



Theorem 4.4. The graph C4m+2 × P2n has an α-valuation.

Proof. Transpose the α-valuation of P2n × P4m+2 given in 3.1, to get
an α-valuation of P4m+2 × P2n. Now subtract 1 from each label of the
(4m+2)nd copy of P2n. We’ve seen earlier that this is also an α-valuation.
Now connect the first copy of P2n to the last, to get C4m+2 ×P2n, and add
2n to the higher labels of the first 2m+ 1 copies of P2n. Similar to before,
this gives an α-valuation of C4m+2 × P2n. ✷

We also have the following result.

Corollary 4.5. The graph C4m+2 × P2n is sequential.

Proof. Apply Grace’s construction to the α-valuation given above, and
subtract 2n from the higher labels to get a sequential labeling. ✷

We illustrate for C6 × P4:

α-valuation
of P6 × P4

21 18 20 19

14 24 15 23

28 11 27 12

7 31 8 30

35 4 34 5

0 38 1 37

new α-valuation
of P6 × P4

20 17 19 18

14 24 15 23

28 11 27 12

7 31 8 30

35 4 34 5

0 38 1 37

α-valuation
of C6 × P4

20 17 19 18

14 24 15 23

28 11 27 12

7 35 8 34

39 4 38 5

0 42 1 41

sequential labeling
of C6 × P4

16 1 15 0

4 20 3 19

24 7 23 6

11 31 10 30

35 14 34 13

18 38 17 37

Theorems 4.2 and 4.3 show that all graphs C4n × Pm are sequential,
except for C4 × P2m. In fact, Graham and Sloane [7] used an exhaustive



computer search to show that C4 × P2 is not even harmonious. However,
our next result shows that this is the sole exception among these graphs.

Theorem 4.6. If n > 2, then C4 × Pn is sequential.

Proof. Let M denote the labeling of C4 by 3, 4n − 1, 5, 4n, and N the
labeling 0, 4n−5, 2, 4n−6. Let M(x) denote the labeling obtained from M
by adding x to the vertex labels, and let M(x; t) be the labeling obtained by
rotating M(x) through t vertices (as in the proof of Theorem 4.1). Define
N(x; t) similarly.

Now, label the first copy of C4 N(0; 0), the last N(4(n − 1);n + 1).
Label the rth copy (1 < r < n) M(4(r − 2); r − 1).

The edge labels on the rth copy of C4 are 8r+4n−14 through 8r+4n−11,
and the edges joining the rth and (r + 1)st copies have labels 8r + 4n− 10
through 8r+ 4n− 7. One readily checks that the vertex labels are distinct
and in the desired range, so this is a sequential labeling. ✷

We illustrate for C4 × P5 and C4 × P6:

sequential labeling
of C4 × P5

14 5 23 11 31

2 19 7 28 16

15 3 24 13 30

0 20 9 27 18

sequential labeling
of C4 × P6

18 5 27 11 36 20

2 23 7 32 17 38

19 3 28 13 35 22

0 24 9 31 15 39

Graham and Sloane [7] note that any harmonious labeling of C2m+1

extends to a harmonious labeling of C2m+1 × Pn. The same is true for
sequential labelings, as noted by Grace [5]. Indeed, if Q is any sequential
labeling of C2m+1, (for example, 0, m+ 1, 1, m+ 2, 2, . . ., m− 1, 2m, m),
and Q(x; t) defined as in 4.6, then Q(0; 0), Q(2m+ 1; 1), Q(2(2m+ 1); 0),
Q(3(2m + 1); 1), . . . is a sequential labeling of C2m+1 × Pn. Illustrated is
C5 × P6:

sequential labeling of C5 × P6

2 9 12 19 22 29

4 6 14 16 24 26

1 8 11 18 21 28

3 5 13 15 23 25

0 7 10 17 20 27



5. Toroidal Grids. These graphs seem to be more challenging, and we
have settled very few cases.

Theorem 5.1. The graph C4m × C4n has an α-valuation.

Proof. Start with the α-valuation of C4m × P4n given in 4.1. Connect
the first and last copies of C4m to get the graph C4m ×C4n. Now, add 4m
to the higher labels in the first 2n copies of C4m to get an α-valuation. ✷

We illustrate for C4 × C8:

α-valuation of C4 × P8

58 5 50 13 42 21 34 29

1 56 9 48 17 40 25 32

60 4 52 12 44 20 36 28

0 54 8 46 16 38 24 30

α-valuation of C4 × C8

62 5 54 13 42 21 34 29

1 60 9 52 17 40 25 32

64 4 56 12 44 20 36 28

0 58 8 50 16 38 24 30

A slight variation will work for C4m × C4n+2.

Theorem 5.2. The graph C4m × C4n+2 has an α-valuation.

Proof. Start with the α-valuation given in 4.1 of C4m × P4n+2, except
label the (4n+2)nd copy of C4m with L(16mn+4m, 16mn+4m;−1) instead
of L(16mn+4m, 16mn+4m; 1). As in 4.1, this is also an α-valuation. Now,
connect the first and last copies of C4m, to get C4m×C4n+2, and add 4m to
the higher labels in the first 2n+1 copies of C4m. This gives an α-valuation
of C4m × C4n+2. ✷

We illustrate for C4 × C6:

original α-valuation
of C4 × P6

42 5 34 13 26 21

1 40 9 32 17 24

44 4 36 12 28 20

0 38 8 30 16 22

new α-valuation
of C4 × P6

42 5 34 13 26 20

1 40 9 32 17 22

44 4 36 12 28 21

0 38 8 30 16 24

α-valuation
of C4 × C6

46 5 38 13 26 20

1 44 9 32 17 22

48 4 40 12 28 21

0 42 8 30 16 24

Our only families of sequential toroidal grids come from the sequential
labeling of C4 × Pn given in 4.6.



Theorem 5.3. The graph C4 × C4n is sequential.

Proof. Start with the sequential labeling of C4×P4n given in 4.6. Connect
the first copy of C4 to the last copy, and add 4 to the higher labels of the
last 2n copies of C4 to get a sequential labeling of C4 × C4n. ✷

sequential labeling of C4 × P8

27 3 36 13 43 19 52 28

2 31 7 40 17 47 23 55

26 5 35 11 44 21 51 30

0 32 9 39 15 48 25 54

sequential labeling of C4 × C8

27 3 36 13 47 19 56 28

2 31 7 40 17 51 23 59

26 5 35 11 48 21 55 30

0 32 9 39 15 52 25 58

A slight twist will give us a sequential labeling of C4 × C4n+2.

Theorem 5.4. The graph C4 × C4n+2 is sequential.

Proof. Start with the sequential labeling of C4 ×P4n+2 given in 4.6, and
rotate the labels of the first two copies of C4 through 2 vertices. It is easily
verified that this is also a sequential labeling. Now, join the first and last
copies of C4, and add 4 to the higher labels of the last 2n+ 1 copies of C4.
This gives a sequential labeling of C4 × C4n+2. ✷

We illustrate for C4 × C6:

original sequential
labeling of C4 × P6

18 5 27 11 36 20

2 23 7 32 17 38

19 3 28 13 35 22

0 24 9 31 15 39

new sequential
labeling of C4 × P6

19 3 27 11 36 20

0 24 7 32 17 38

18 5 28 13 35 22

2 23 9 31 15 39

sequential labeling
of C4 × C6

19 3 27 11 40 20

0 24 7 36 17 42

18 5 28 13 39 22

2 23 9 35 15 43

6. Negative results. In our opening remarks, we note that if G has an
α-valuation, then G is bipartite. This necessary condition is responsible
for the four negative results for α-valuations. There is also a necessary
condition for some graphs to be graceful.



Theorem 6.1. Suppose G is any graph with a graceful labeling, and let
e1, e2, . . . , en be any edge-cycle of G. Then we can divide the edges e1
through en into two subsets such that the sum of edge-labels of one subset
equals that of the other subset.

Proof. Let vi be the vertex shared by ei and ei+1 (where en+1 = e1), and
let |v| and |e| be the labels on v and e respectively. Then |v2| = |v1| ± |e2|,
|v3| = |v2| ± |e3|, etc. Combining these equations, we get |v1| = |v1| ± |e2|
± |e3| ± · · · ± |e1|, so 0 = ± |e1| ± |e2| ± · · · ± |en|. Those edges preceded
by a plus sign in this equation form one subset; the other edges form the
second subset. ✷

Corollary 6.2. Let G and e1, . . . , en be as described in Theorem 6.1.
Then

∑n

i=1 |ei| is an even integer.
The following corollary was first given by Rosa [10], however we provide

an alternate proof.

Corollary 6.3. Let G be any graph with a graceful labeling. Suppose
G has e edges, and suppose every vertex of G has an even valence. Then
either e ≡ 3 mod 4 or e ≡ 0 mod 4.

Proof. G has an Eulerian cycle, so by Corollary 6.2, the sum of the edges
is even. This sum is e(e+ 1)/2, so e ≡ 3 mod 4 or e ≡ 0 mod 4. ✷

Corollary 6.4. If m and n are odd, then Cm × Cn is not graceful.
The only general necessary condition for a graph to be harmonious is

due to Graham and Sloane [7]. We include the proof for completeness.

Theorem 6.5. If the harmonious graph G has an even number e of edges,
and for some k ≥ 0, the degree of each vertex in G is a multiple of 2k, then
e is a multiple of 2k+1.

Proof. Let f be a harmonious labeling, let e = 2e′, let v(x) denote the
degree of the vertex x and let v(x) = 2kv′(x). Then we have

e′ ≡

e
∑

n=1

n ≡
∑

xy∈E(G)

f(xy) =
∑

xy∈E(G)

f(x) + f(y) =

∑

x∈V (G)

v(x)f(x) = 2k
∑

x∈V (G)

v′(x)f(x) mod e.



Thus, 0 6≡ e′ ≡ 2k
∑

v′(x)f(x), while 0 ≡ 2e′ ≡ 2k+1
∑

v′(x)f(x).
Therefore, the element

∑

v∈V (G) v
′(x)f(x) has order exactly 2k+1 in Z/eZ,

whence 2k+1 divides e. ✷

Corollary 6.6. If 4 does not divide mn, then Cm×Cn is not harmonious
(and hence not sequential).

7. Conclusion. It remains unknown whether or not several classes of
grids have various labelings (see gaps in Table 1). Since we have been
unable to complete Table 1, we pose as an open question the determination
of the missing entries. Although C4 × C3, C4 × C5, C4 × C7, C4 × C9 and
C6×C3 do not have α-valuations, Eric Wepsic has found graceful labelings
for them with the aid of a computer. The sequential labeling of C3 × C4

shown below was found by the authors by trial and error. Likewise, the
graphs C2m+1×Pn do not have α-valuations but Huang and Skiena [8] have
found graceful labelings for them.

C3 × C4 is sequential

6 3 8 14

4 9 15 12

0 5 10 7

To this point, numerous papers have been devoted to labeling various
types of graphs, yet few results can be easily generalized. For instance
Rosa’s criterion (see Corollary 6.3) is the only known necessary condition for
existence of graceful labelings, and no conditions are known to be sufficient.
Of more interest than the completion of Table 1 would be the development
of some general theory of labeling graphs.
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