Appeared in Proceedings of the National Conference on Artificial Intelligence (AAAI-98), Madison, WI, July, 1998, pp. 305-310.

Complexity Analysis of Admissible Heuristic Search

Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

We analyze the asymptotic time complexity of admis-
sible heuristic search algorithms such as A*) IDA*,
and depth-first branch-and-bound. Previous analyses
relied on an abstract analytical model, and character-
ize the heuristic function in terms of its accuracy, but
do not apply to real problems. In contrast, our anal-
ysis allows us to accurately predict the performance
of these algorithms on problems such as the sliding-
tile puzzles and Rubik’s Cube. The heuristic function
is characterized simply by the distribution of heuris-
tic values in the problem space. Contrary to conven-
tional wisdom, our analysis shows that the asymptotic
heuristic branching factor is the same as the brute-
force branching factor, and that the effect of a heuris-
tic function is to reduce the effective depth of search,
rather than the effective branching factor.

Introduction

We consider the asymptotic time complexity of
heuristic search algorithms, such as A* (Hart et al
1968), iterative-deepening-A* (IDA*) (Korf 1985), and
depth-first branch-and-bound (DFBuB), that are guar-
anteed to return optimal solutions. All these algo-
rithms use the same cost function, f(n) = g(n)+ h(n),
applied to each node n of the search space, where g(n)
is the cost of reaching node n from the initial state, and
h(n) is an estimate of the cost of reaching a goal from
node n. h(n) is admissible if it never overestimates the
cost of reaching a goal from node n. These algorithms
are only guaranteed to find an optimal solution, if their
heuristic function is admissible (Hart et al 1968).

The time complexity of these algorithms depends
primarily on the quality of the heuristic function. For
example, if the heuristic returns zero for every state,
these algorithms become brute-force searches, with
time complexity that is exponential in the solution
cost. Alternatively, if the heuristic always returns the
exact cost to reach a goal, the time complexity is linear
in the solution depth, assuming ties among f values
are broken in favor of smaller i values (Pearl 1984).
Realistic cases fall between these two extremes.

Copyright (© 1998, American Association for Artificial
Intelligence (www.aaal.org). All rights reserved.

Michael Reid
Department of Mathematics
Brown University
Providence, RI 02912
reid@math.brown.edu

Previous Work

Most previous work on this problem (Pohl 1977,
Gaschnig 1979, Pearl 1984) was based on an abstract
model of the problem space and heuristic function.
The model is a tree with no cycles, where every node
has exactly b children. Every edge has unit cost, and
there is a single goal node at depth d.

The heuristic function is characterized by its error
as an estimator of actual solution cost. For exam-
ple, two common assumptions are that the heuristic
suffers from constant absolute error, or constant rela-
tive error. This model predicts that a heuristic with
constant relative error results in linear time complex-
ity, while constant absolute error results in exponential
time complexity (Pohl 1977, Gaschnig 1979).

The main limitation of these analyses is the charac-
terization of the heuristic function in terms of its error.
In order to determine the accuracy of the heuristic on
even a single state, we need to know the optimal cost
to a goal from that state, which requires a great deal of
computation. Doing this for a large number of states
is impractical for large problems. In other words, we
can’t determine the accuracy of real heuristics. As a
result, we cannot predict the performance of these al-
gorithms on real problems.

Overview

This requires a different approach, which is the subject
of this paper. We begin with the conditions for node
expansion by any admissible search algorithm. Next,
we give an alternative characterization of a heuristic,
which is simply the distribution of heuristic values over
the problem space. Then we specify the assumptions
of our analysis. The main result is the number of
node generations as a function of the distribution of
the heuristic, the depth of search, and the branching
factor of the problem space. Finally, we compare our
analytic predictions with actual data on both Rubik’s
Cube and sliding-tile puzzles, using well-known heuris-
tics. One of the implications of this analysis is that,
contrary to current belief, the effect of a heuristic func-
tion is to decrease the effective depth of search, rather
than the effective branching factor.

Conditions for Node Expansion

We measure asymptotic time complexity by the num-
ber of node generations, which is b times the number
of node expansions, where b is the branching factor.
This assumes that a node can be generated and eval-
uated in constant time. While some implementations
of A* require logarithmic time to select the best node
to expand next, and some heuristic functions require
more than constant time to evaluate, these additional
costs are usually polynomial, however, and depend on
particular implementation choices. The dominant fac-
tor in time complexity, however, is the number of node
generations, which is usually exponential in solution
cost, and relatively independent of the particular ad-
missible algorithm chosen and its implementation. The
set of nodes expanded can be characterized by their
cost, relative to the optimal solution cost. We begin
with the conditions for node expansion by A*, then
consider IDA* and depth-first branch-and-bound.

A heuristic function h(n) is consistent if for any node
n and any neighbor n’, h(n) < k(n,n’) + h(n’), where
k(n,n') is the cost of the edge from n to n’ (Pearl
1984). Consistency is similar to the triangle inequal-
ity of metrics, and is usually satisfied in practice. If
h(n) is counsistent, then f(n) = g(n) + h(n) is mono-
tonically nondecreasing along any path from the root
node. Thus, the sequence of costs of nodes expanded
by A* starts at the heuristic value of the start state,
and stays the same or increases until it reaches the
cost of an optimal solution. Some nodes with the opti-
mal solution cost may be expanded, until a goal node
is chosen for expansion, at which point the algorithm
terminates. This means that all nodes n whose cost
f(n) < ¢ will be expanded, where ¢ is the optimal so-
lution cost, and no nodes n whose cost f(n) > ¢ will
be expanded. In other words, f(n) < c is a sufficient
condition for A* to expand node n, and f(n) < ¢ is
a necessary condition. For a worst-case analysis, we
adopt the necessary condition.

If the heuristic function is inconsistent, then the con-
ditions for node expansion are more complex. How-
ever, most naturally occurring admissible heuristic
functions are consistent (Pearl 1984). Furthermore,
an inconsistent but admissible heuristic is easily trans-
formed into a consistent admissible heuristic, which is
more accurate than the original one (Mero 1984).

An easy way to understand the node expansion con-
dition is that any admissible search algorithm must
continue to expand every possible solution path until
its cost is guaranteed to exceed the cost of an optimal
solution, lest it lead to a better solution. Thus, while
this condition was originally derived for A*, it also ap-
plies to IDA* and depth-first branch-and-bound.

On the final iteration of IDA*, the one that finds
a goal, the cost threshold will equal ¢, and in the
worst case, IDA* will expand all nodes n whose cost
f(n) < c. If the number of nodes grows exponentially
with cost, the previous iterations will not effect the

asymptotic time complexity of IDA* (Korf, 1985).

For depth-first branch-and-bound (DFBnB), once an
optimal solution is found, the upper bound on solution
cost will equal ¢. From then on, DFBnB will expand
only those nodes with f(n) < c¢. Until then, while
the upper bound exceeds ¢, DFBnB will expand some
nodes with f(n) > c¢. However, locally ordering the
internal nodes of the search tree by cost often results
in finding an optimal solution fairly quickly, with most
of the time spent verifying that the solution is indeed
optimal. Thus, we measure the asymptotic time com-
plexity of all three algorithms by the number of nodes
n whose total cost f(n) = g(n) + h(n) < ¢, where ¢ is
the cost of an optimal solution.

Characterization of the Heuristic

The previous analyses characterized the heuristic func-
tion in terms of its accuracy of estimating optimal
costs. As mentioned above, this is very hard to de-
termine for a real heuristic, since obtaining optimal
solutions is computationally very expensive.

By contrast, we characterize a heuristic by the distri-
bution of heuristic values over all nodes in the problem
space. In other words, all we need to know is the num-
ber of nodes that have heuristic value zero, one, two,
etc. Equivalently, we specify this distribution by a set
of parameters P(x), which is the fraction of total nodes
in the problem space whose heuristic value is less than
or equal to x. We refer to this set of values as the over-
all distribution of the heuristic function, assuming that
every state in the problem space is equally likely. For
all values of x greater than or equal to the maximum
value of the heuristic, P(z) = 1.

The overall distribution is easily obtained for most
real heuristics. For heuristics that are implemented
by table-lookup, or pattern databases (Culberson and
Schaeffer 1996), the distribution can be determined ex-
actly from the table. Alternatively, another way to
view P(x) is as the probability that a state s chosen
randomly and uniformly from all states in the problem
space has h(s) < x. Thus, by random sampling of the
problem space, we can determine the overall distribu-
tion to any desired degree of accuracy.

For heuristics that are the maximum of several dif-
ferent heuristics, we can compute the overall distribu-
tion of the entire heuristic from the distributions of the
individual heuristics by assuming that the individual
heuristic values are independent of one another. The
resulting distribution will be accurate to the extent
that the independence assumption is warranted.

Note that the characterization of a heuristic func-
tion in terms of its distribution is not a measure of the
accuracy of the function. In particular, it says noth-
ing about the correlation of heuristic values with actual
costs, and hence doesn’t require the computation of op-
timal solutions to any problem instances. As a result,
the overall distribution is much easier to determine in
practice than the accuracy of a heuristic function.

The Equilibrium Distribution

While the overall distribution is the easiest to under-
stand, the complexity of a search algorithm depends
on a potentially different distribution called the equi-
librium distribution. The equilibrium distribution is
the distribution of heuristic values at a given depth of
a brute-force search, in the limit of large depth.

In some cases, such as a Rubik’s Cube problem space
where a 180-degree twist is a single move, the equilib-
rium distribution is the same as the overall distribu-
tion. The reason is that in this problem space, ignoring
any special significance attached to the standard goal
state, every state is equivalent to every other state,
in the sense that there exists an automorphism of the
problem space that maps any state to any other state.

In general, however, the equilibrium distribution
may not equal the overall distribution, for example in
bipartite problem-space graphs. A bipartite graph is
one where the set of nodes can be divided into two
subsets so that every edge goes between nodes in dif-
ferent subsets. For example, the problem spaces of
the sliding-tile puzzles, shown in Figure 1, are bipar-
tite. Every legal move takes the blank from an odd-
numbered position to an even-numbered position. If
our underlying problem space is bipartite, then the
heuristic values may converge to two different equilib-
rium distributions, one at even levels of the tree and
the other at odd levels.

12 1123
3|45 5/4,7|6
6| 7|8 8| 9/10|11

1312|1514

Figure 1: Eight and Fifteen Puzzles

For example, the familiar Manhattan distance
heuristic function for the sliding-tile puzzles is com-
puted by measuring the distance of each tile from its
goal location in grid units, and summing these values
over all tiles, except the blank. This heuristic is both
admissible and consistent. Since the Manhattan dis-
tance always increases or decreases by one with every
move, at a given level of the search tree, the Manhat-
tan distance of all nodes have the same even-odd parity.
Thus, there are two different equilibrium heuristic dis-
tributions, one for odd values and one for even values.

Another reason for a discrepancy between the equi-
librium and overall distributions is if the problem space
contains different types of states. For example, in
Eight Puzzle states where the distance to the goal and
hence Manhattan distance is even, the blank could ei-
ther be in the center or a corner location. The over-
all distribution assumes that any position of the blank
is equally likely, but in a deep brute-force search, the

blank is more likely to be in the center position than in
any one of the corners (Edelkamp and Korf 1998). In
this case, the equilibrium distribution of odd heuristic
values is computed by combining the separate overall
distributions for corner and center states, weighted by
their relative asymptotic frequencies.

The equilibrium distribution is not a property of a
problem, but of a problem space. For example, elimi-
nating the parent of a node as one of its children in a
problem with invertible operators will affect the equi-
librium distribution. As another example, the Rubik’s
Cube problem space that allows only 90-degree twists
as primitive operators is a bipartite graph, whereas
the space that allows single 180-degree twists is not
bipartite. The equilibrium distribution is defined by a
brute-force search of a particular problem space, and
is not affected by any pruning of the tree. Thus, it is
independent of cost threshold and initial state.

In a bipartite graph, we treat even and odd levels
of the search separately. For simplicity of exposition,
however, we will use P(z) to refer to a single equilib-
rium distribution. If it can’t be determined exactly, it
may be approximated by the overall distribution.

The Complexity Analysis
Basic Assumptions

First, we assume that our algorithm doesn’t detect
states that have been previously generated. Thus, mul-
tiple nodes that correspond to the same state of the
problem are counted separately in our analysis. This
is true of linear-space algorithms such as IDA* and DF-
BnB. While A* checks for previously generated states,
the resulting space complexity makes it impractical for
large problems. Next, we assume that all edges have
unit cost, and hence the cost of a solution is the num-
ber of edges in the solution path. We also assume that
the heuristic function is integer valued. Given an ad-
missible non-integer valued heuristic, we simply round
up to the next larger integer. We also assume that the
heuristic is consistent. This implies that the heuris-
tic value of a parent is at most one greater than the
heuristic value of its children.

Given these assumptions, our task is to determine
N(b,d, P) the asymptotic worst-case number of nodes
generated by an admissible search algorithm on a tree
with branching factor b, solution depth d, and a heuris-
tic characterized by the equilibrium distribution P(x).
As explained above, this is the number of children of

nodes n for which f(n) = g(n) + h(n) < d.

An Example Search Tree

To understand the derivation of our main result, con-
sider Figure 2. It shows a schematic representation of a
search tree generated by an iteration of IDA* to depth
8. The vertical axis represents the depth of a node
below the start, and the horizontal axis represents the
heuristic value. Each box represents not an individual

node, but an entire set of nodes with the same depth
and heuristic value, indicated by the number in the
node. The arrows represent the relationship between
parent and child node sets. Since the heuristic is as-
sumed to be consistent, and furthermore, in our exam-
ple problems all operators are invertible, each parent
node can only generate children with heuristic values
one less, one greater, or equal to that of the parent,
but this latter condition is not required by our analy-
sis. Solid boxes represent “fertile” nodes which are ex-
panded in this iteration, while dotted boxes represent
“sterile” nodes that are not expanded, because their
total cost exceeds the cutoff depth. The thick diagonal
line separates the fertile and sterile nodes. In this par-
ticular example, the maximum value of the heuristic is
4, and the cutoff depth d is 8 moves. We arbitrarily
chose 3 for the heuristic value of the start state.

0 3 b
d=8
1 2 3 4 | pt
2 1 2 3 4| b?
D 3|0 1 2 3 4| bd
e
p 4|0 1 2 3 4 |p*
t
h 50 1 2 3 4 p°P(4)
60 1 21/ 3 i 4ip®R(3)
710 1 2 3 b’ P(2)
80 2 b®P(1)
e B 9
9 0 1 b°P(0)

Heuri stic Val ue

Figure 2: Sample Graph for Analysis Result

Nodes Generated as a Function of Depth

At depth 0, there is a single start state. This root
node generates b children, whose heuristic values range

from 2 to 4, inclusive. Each of these nodes generate b
nodes, whose heuristic values will range from 1 to 4,
giving a total of b nodes at depth 2. Since the cutoff
depth is 8, in the worst-case, all nodes n whose total
cost f(n) = g(n) + h(n) < 8 will be expanded. Since
4 is the maximum heuristic value, all nodes down to
depth 8 — 4 = 4 will be expanded, and hence all nodes
down to depth 5 will be generated, as in a brute-force
search. Down to this depth, the number of nodes at
depth d will be b%. Note that P(4) = 1, and hence
b°P(4) = b?, since 4 is the maximum heuristic value.
In general, down to depth d — m, where d is the cutoff
depth and m is the maximum heuristic value, all nodes
are expanded, and up to depth d —m+1, all nodes are
generated. Asymptotically in the limit of large depth,
the distribution of heuristic values will have converged
to the equilibrium distribution by this point.

The total number of nodes at depth 6 is b times the
number of fertile nodes at depth 5. The fertile nodes at
depth 5 are those with f(n) = g(n)+h(n) = 5+h(n) <
8, or h(n) < 3. Since the heuristic distribution at
depth 5 is assumed to be the equilibrium distribution,
the fraction of all the nodes at depth 5 with hA(n) < 3
is P(3). Since the total number of nodes at depth 5
is b, the number of fertile nodes at depth 5 is b° P(3),
and the total number of nodes at depth 6 is b%P(3).

While there are nodes at depth 6 with all possible
heuristic values, their distribution is not equal to the
equilibrium distribution. In particular, the nodes with
heuristic values 3 and 4 are underrepresented compared
to the equilibrium distribution. The reason is that such
nodes are normally generated by parents with heuristic
values from 2 to 4. At depth 5, however, the nodes with
heuristic value 4 are sterile, and hence their offspring
are missing from depth 6, reducing the number of nodes
at depth 6 with heuristic values 3 and 4.

The number of nodes at depth 6 with h(n) < 2 is
completely unaffected by this pruning, however, since
their parents are the nodes at depth 5 with h(n) < 3,
all of which are fertile. In other words, the number of
nodes at depth 6 with h(n) < 2 is exactly the same as
in a brute-force search to depth 6, or bSP(2).

Similarly, the number of nodes at depth 7 is b times
the number of fertile nodes at depth 6. The fertile
nodes at depth 6 are those with h(n) < 2. Thus, the
number of nodes at depth 7 is b- b P(2) = b" P(2).

Due to consistency of the heuristic function, all the
possible parents of fertile nodes are themselves fertile.
Thus, the absolute numbers of nodes to the left of the
diagonal line is exactly the same as in a brute-force
search. In other words, the heuristic pruning of the
tree has no effect on the fertile nodes, even though
the distribution of the sterile nodes is affected. This
is the key idea behind this analysis. If the heuristic
were inconsistent, then the distribution of fertile nodes
would change at every level where pruning occurred,
making the analysis much more complex.

In general, the number of fertile nodes at depth i is

b'P(d — i), and the total number of nodes at depth i is
b times the number of fertile nodes at depth i — 1, or
bbi=1P(d—(i—1)) or b'P(d—i+1). The total number

of nodes generated by the iteration in the worst case is

d+1
N(b.d,P)=> b P(d—i+1)
=1

Heuristic Branching Factor

The heuristic branching factor is the ratio of the num-
ber of nodes generated in an iteration to depth d, com-
pared to an iteration to depth d — 1. One immedi-
ate consequence of our analysis is that the heuristic
branching factor is the same as the brute-force branch-
ing factor b. This conflicts with results from previous
analyses based on an abstract model (Pearl, 1984),
which predict that the effect of a heuristic function
is to reduce the heuristic branching factor, and hence
the overall complexity, from O(b?) to O(a?), where
a < b. Our analysis, however, shows that the ef-
fect of the heuristic is to reduce the effective depth of
search, rather than the branching factor, from O(b?)
to O(b?~*), for some constant k.

Comparison with Experimental Data

We tested our analysis by predicting the nodes gener-
ated by IDA* on Rubik’s Cube and sliding-tile puzzles,
using well-known heuristics. In the above analysis, we
used b¢ to represent the number of nodes at depth d
in a brute-force search. In our predictions below, we
replaced the b? terms in our formula by the actual num-
bers of nodes at level d. These numbers are computed
in time linear in the depth, by expanding a set of re-
currence relations governing the generation of different
types of nodes (Edelkamp and Korf 1998).

Rubik’s Cube

We first tried to predict results previously obtained on
Rubik’s Cube (Korf 1997). We use a problem space
which allows 180-degree twists as single moves, we dis-
allow two consecutive twists of the same face, and we
only allow opposite faces to be twisted in succession in
one order, since twists of opposite faces are indepen-
dent and hence commutative. This space has a brute-
force branching factor of about 13.34847. The median
optimal solution depth is 18 moves.

The heuristic we used is the maximum of three differ-
ent pattern databases (Culberson and Schaeffer 1996).
It is admissible and consistent, with a maximum value
of 11 moves, and a mean value of about 8.9 moves.
We calculated the overall distribution of the individ-
ual heuristics exactly, then assumed independence of
the three heuristics to calculate the overall distribu-
tion of the combined heuristic. We ignored goal states,
completing the search iterations to various depths.

In Table 1, the left-most column shows the search
depth, the center column gives the node generations

Depth Theoretical Experimental | KError
10 1,510 1,501 | .596%
11 20,169 20,151 | .089%
12 269,229 270,396 | .433%
13 3,593,800 3,564,495 | .815%
14 47,971,732 47,916,699 | .115%
15 640,349,193 642,403,155 | .321%
16 8,547,681,506 8,599,849,255 | .610%
17 114,098,463,567 | 114,773,120,996 | .591%

Table 1: Nodes Generated by IDA* on Rubik’s Cube

predicted by our analysis, the next column shows the
average number of nodes generated by IDA* for a sin-
gle iteration to the given depth, and the last column
gives the error. For depths 10 through 12 we averaged
1000 random problem instances, for depths 13 through
16 we used 100 instances, and for depth 17 we used 25
problem instances, due to computational limits.

The theory predicts the data to within 1% in every
case. The remaining error may be due to noise, or
the independence assumption among the three differ-
ent heuristics. The experimental heuristic branching
factor between the last two levels is 13.34595.

The Eight Puzzle

We ran a similar experiment on the Eight Puzzle, us-
ing the Manhattan distance heuristic. Its maximum
value is 22 moves, and its mean value is 14 moves.
The Eight Puzzle contains only 181,440 solvable states,
so the heuristic distributions were computed exactly.
Three different distributions were used, depending on
the whether the blank is in the center, a corner, or a
side position. This gives us the exact equilibrium dis-
tributions. The number of nodes at a given depth of
the tree depends on the initial position of the blank,
and this is also taken into account. The average opti-
mal solution length is 22 moves, and the maximum is
31 moves, assuming the goal has the blank in a corner.

Table 2 shows a comparison of the number of nodes
predicted by our analysis for a given depth, to the num-
ber of nodes actually generated by a single iteration of
IDA* to the same depth, ignoring any solutions en-
countered. For even depths, each experimental data
point is the average of all 100,800 problem instances at
an even depth from the goal, and for the odd depths is
the average of all 80,640 problem instances at an odd
depth. Since both the average numbers of node gen-
erations and the heuristic distributions are exact, the
model predicts the experimental data exactly.

Fifteen Puzzle

We ran the same experiment on the Fifteen Puzzle,
again using Manhattan distance. The average optimal
solution length is 52.6 moves. Since this puzzle con-
tains over ten trillion solvable states, we can’t compute
the heuristic distribution exactly. Rather, we used a

Depth | Theoretical | Experimental | Error
20 793 793 | 0.0%
21 1,490 1,490 | 0.0%
22 2,386 2,386 | 0.0%
23 4,480 4,480 | 0.0%
24 7,170 7,170 | 0.0%
25 13,442 13,442 | 0.0%
26 21,509 21,509 | 0.0%
27 40,344 40,344 | 0.0%
28 64,553 64,553 | 0.0%
29 121,020 121,020 | 0.0%
30 193,634 193,634 | 0.0%

Table 2: Nodes Generated by IDA* on Eight Puzzle

Depth | Theoretical | Experimental | Error
40 118,847 108,685 | 8.55%
41 253,193 234,588 | 7.35%
42 539,403 502,267 | 6.88%
43 1,149,144 1,077,126 | 6.27%
44 2,448,134 2,313,858 | 5.48%
45 5,215,496 4,936,650 | 5.35%
46 11,111,071 10,632,238 | 4.31%
47 23,670,978 22,591,563 | 4.56%
48 50,428,548 48,752,514 | 3.32%
49 107,432,751 103,255,669 | 3.89%
50 228,874,246 223,159,051 | 2.50%

Table 3: Nodes Generated by IDA* on Fifteen Puzzle

random sample of ten billion states, that were gener-
ated in a way that guaranteed they were solvable, to
approximate the overall distribution. Six different dis-
tributions were used, for each combination of the blank
in a middle, corner, or side position, and at odd and
even depths from the goal. The mean heuristic value
is about 37 moves, and the maximum is 62 moves.
Table 3 is similar to Tables 1 and 2. Each line is the
average of 10,000 random solvable problem instances,
whose solution depths are the same parity as the search
depth. There is enormous variation in the nodes gen-
erated in individual problem instances, for depth 50
ranging from 2 nodes to over 38 billion, for exam-
ple. The agreement between theory and experiment
improves almost monotonically with increasing depth,
as expected for an asymptotic result. At depth 50, the
error between theory and experiment is within 2.5%.

Conclusions and Further Work

We presented the first analysis of the time complex-
ity of admissible heuristic search that predicts perfor-
mance on real problems. Our characterization of the
heuristic is simply the distribution of heuristic values,
information that is easily obtained by random sam-
pling. We compared our analytic predictions with ex-
perimental data on Rubik’s Cube, the Eight Puzzle,
and the Fifteen Puzzle, getting agreement within 1%

for Rubik’s Cube, exact agreement for the Eight Puz-
zle, and than 2.5% for the Fifteen Puzzle on typical
solution lengths. Contrary to previous results, our
analysis and experiments indicate that the asymptotic
heuristic branching factor is the same as the brute-
force branching factor, and hence the effect of a heuris-
tic is to reduce the effective depth of search, rather
than the effective branching factor.

We presented an asymptotic analysis for a fixed-
size problem as the solution length grows large. The
asymptotic results provide excellent predictions at typ-
ical solution depths. Ideally, we would like to predict
the performance of a fixed heuristic as the problem
size increases. For example, what is the asymptotic
performance of the Manhattan distance heuristic on
sliding-tile puzzles, as the puzzle grows large? This
remains an open problem for future research.

Acknowledgments

We would like to thank Eli Gafni, Elias Koutsoupias,
and Mitchell Tsai for several helpful discussions. R.
Korf is supported by NSF grant IRI-9619447.

References

Culberson, J.C., and J. Schaeffer, Searching with pat-
tern databases, in Advances in Artificial Intelligence,

Gordon McCalla (Ed.), Springer Verlag, 1996.
Edelkamp, S. and R.E. Korf, The branching fac-

tor of regular search spaces, Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI-
98), Madison, WI, July, 1998.

Gaschnig, J. Performance measurement and analy-
sis of certain search algorithms, Ph.D. thesis. Depart-
ment of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pa., 1979.

Hart, P.E., N.J. Nilsson, and B. Raphael, A formal
basis for the heuristic determination of minimum cost
paths, IEEE Transactions on Systems Science and
Cybernetics, Vol. SSC-4, No. 2, July 1968, pp. 100-
107.

Korf, R.E., Depth-first iterative-deepening: An opti-
mal admissible tree search, Artificial Intelligence, Vol.
27, No. 1, 1985, pp. 97-109.

Korf, R.E., Finding optimal solutions to Rubik’s
Cube using pattern databases, Proceedings of the
Fourteenth National Conference on Artificial Intel-
ligence (AAAI-97), Providence, RI, July, 1997, pp.
700-705.

Mero, L., A heuristic search algorithm with modifi-
able estimate, Artificial Intelligence, Vol. 23, 1984,
pp- 13-27.

Pearl, J. Heuristics, Addison-Wesley, Reading, MA,
1984.

Pohl, I., Practical and theoretical considerations in
heuristic search algorithms, Machine Intelligence 8,

1977, pp. 55-72

