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Abstract. Let T be a protoset of d-dimensional polyominoes. Which boxes (rectangular
parallelepipeds) can be tiled by T ? A nice result of Klarner and Göbel asserts that the

answer to this question can always be given in a particularly simple form, namely, by giving

a finite list of “prime” boxes. All other boxes that can be tiled can be deduced from these
prime boxes. We give a new, simpler proof of this fundamental result. We also show that

there is no upper bound to the number of prime boxes, even when restricting attention to

singleton protosets. In the last section, we determine the set of prime rectangles for several
small polyominoes.

1. Introduction

A polyomino is a finite union of squares of the infinite chessboard. A d-dimensional

polyomino is a finite union of cubes of an infinite d-dimensional “chessboard”. It is tra-
ditional also to require that they be “rookwise connected” (equivalently, have connected
interior) but we do not require this, and it does not affect our results in any way.

Let T be a protoset of d-dimensional polyominoes. We wish to know which regions can
be tiled by the protoset. Here, T is the set of shapes that may occur in the tiling. Any
shape in T may be used repeatedly, if desired, and there is no requirement that every
shape is actually used.

We will focus our attention on the problem of tiling boxes (i.e. rectangular paral-
lelepipeds) here. Our interest is two-fold. Firstly, boxes are the simplest type of (finite)
regions. Secondly, there is some structure; from tilings of several boxes, others can be
deduced. The topic of tiling boxes by polyominoes has already received considerable at-
tention, for example [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 25, 26, 27,
29, 30, 31, 32]
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In the next section, we introduce the abstract notion of a Klarner system, and prove a
finiteness theorem for such systems. We then interpret this in terms of tiling boxes with
polyominoes, to show that every protoset has only finitely many prime boxes. (This is the
result of Klarner and Göbel.) In section 4, we show that there is no upper bound to the
number of primes, even if restricting attention to a narrow class of protosets. In the last
section, we determine the set of prime rectangles for several small polyominoes.

2. Klarner Systems

2.1. Definition. A (d-dimensional) Klarner system is a subset J ⊆ N
d with the property

that if both (a1, a2, . . . , ai−1, ai, ai+1, . . . , ad) and (a1, a2, . . . , ai−1, a
′

i, ai+1, . . . , ad) are in
J , then so is (a1, a2, . . . , ai−1, ai + a′i, ai+1, . . . , ad).

2.2. Examples.

(1) J = N
d.

(2) Let T be a collection of d-dimensional polyominoes, and take

J = {(a1, a2, . . . , ad) | T tiles an a1 × a2 × · · · × ad box } .

Indeed, if T tiles two boxes that have the same dimensions in all but one coordinate, two
such tilings may be juxtaposed to give a tiling of a larger box.

(3) As (2) above, but with T a collection of translation-only polyominoes. This means
that the prototiles are each given in a fixed orientation, and when one occurs in the tiling,
it must be used in the same orientation.

Examples (2) and (3) are our main motivation.

2.3. Proposition. (a) An increasing union of Klarner systems is also a Klarner system.

(b) Any non-empty intersection of Klarner systems is also a Klarner system.

Proof. Immediate. �

2.4. Definition. Let S ⊆ N
d be any set. The Klarner system generated by S is the

smallest Klarner system containing S, denoted by K(S). Equivalently, it is the intersection
of all Klarner systems that contain S. The Klarner system N

d certainly contains S, so this
intersection is non-empty.

2.5. Definition. If J ⊆ N
d is a Klarner system, then a prime of J is a d-tuple a =

(a1, a2, . . . , ad) ∈ J such that J \ {a} is also a Klarner system.

This definition deserves a few words of explanation. If a ∈ J is not prime, then J \ {a}
generates J as a Klarner system. This means that the d-tuple a = (a1, a2, . . . , ad) can be
“decomposed” into two smaller elements of J . In other words, for some index i, there are
(a1, a2, . . . , ai−1, a

′

i, ai+1, . . . , ad) and (a1, a2, . . . , ai−1, a
′′

i , ai+1, . . . , ad) in J , with a′i +
a′′i = ai. A d-tuple a ∈ J is prime if it cannot be decomposed in this manner.

2.6. Proposition. Let J be a Klarner system, and P its set of primes.
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(a) P generates J as a Klarner system.

(b) If S generates J , then P ⊆ S.

Proof. (a) If K(P) 6= J , then choose a “smallest” d-tuple a ∈ J \ K(P). Then a /∈
K(P) ⊇ P, so it can be decomposed into two smaller elements of J . By minimality of a,
these two smaller elements are in K(P), whence a is also, a contradiction.

(b) If a ∈ P \ S, then K(S) ⊆ K(J \ a) = J \ a, a contradiction. �

2.7. Theorem. If J ⊆ N
d is a Klarner system, then its set of primes is finite.

Proof. We note that it suffices to prove that J has a finite generating set. This we prove
by induction on the dimension, d.

Suppose that d = 1. If J is empty, then its set of primes is also empty. Otherwise, let
m be the minimal element of J . For 1 ≤ i < m, let ai be the smallest element of J that
is congruent to i mod m, if it exists. Then the finite set {m, ai | 1 ≤ i < m} generates J .
This proves the case d = 1.

Now suppose that the Theorem is true in d−1 dimensions, that is, all (d−1)-dimensional
Klarner systems are finitely generated. Let J ⊆ N

d be a d-dimensional Klarner system.
For m ∈ N, let

J(m) =
{

(a1, a2, . . . , ad−1) ∈ N
d−1 | (a1, a2, . . . , ad−1, m) ∈ J

}

.

We note the following properties of these J(m)’s.

(1) J(m) is a (d− 1)-dimensional Klarner system.

(2) J(m) ∩ J(n) ⊆ J(m+ n).

(3) If m divides n, then J(m) ⊆ J(n).

Properties (1) and (2) follow immediately from the definition of Klarner system. Then
an easy induction on k shows that J(m) ⊆ J(km), whence (3).

We further claim that:

(4) There is a maximal J(m) (with respect to inclusion), and

(5) The sequence {J(m)} is eventually periodic in m.

Let J∞ =
⋃

∞

m=1 J(m!), which is an increasing union, and thus is a (d− 1)-dimensional
Klarner system. Therefore, by the induction hypothesis, J∞ is finitely generated. For any
m, we have J(m) ⊆ J(m!) ⊆ J∞. If S ⊆ J∞ is a finite generating set, then S ⊆ J(m0)
for some m0, whence J∞ ⊆ J(m0). Thus J∞ = J(m0), which is therefore maximal. This
proves (4).

Let m0 be as above, so that J(m0) is maximal. For any k, we have J(k) ⊆ J(k +m0),
from (2). Consider the increasing chain J(k) ⊆ J(k + m0) ⊆ J(k + 2m0) ⊆ · · · for
1 ≤ k ≤ m0, and let J∞,k be its union, which is a (d − 1)-dimensional Klarner system.
As before, J∞,k is finitely generated, so it equals J(k + tm0) for sufficiently large t. This
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shows that the increasing chain stabilizes, and since there are only finitely many such, the
sequence {J(m)} is eventually periodic. This proves (5).

We have shown there is M > 0 such that J(k−m0) = J(k) for all k > M . Let S(k) be
a finite set of generators of the (d− 1)-dimensional Klarner system J(k), and let

T (k) = {(a1, a2, . . . , ad−1, k) | (a1, a2, . . . , ad−1) ∈ S(k)} .

Let T =
⋃M

k=1 T (k), which is a finite set. To finish the induction step, we will show that T
generates J . Suppose (a1, a2, . . . , ad) ∈ J . If ad ≤ M , then (a1, a2, . . . , ad−1) ∈ K(S(ad)),
so (a1, a2, . . . , ad) ∈ K(T (ad)) ⊆ K(T ). If ad > M , then write ad = k + tm0, where
M −m0 < k ≤ M , and t > 0. Then (a1, a2, . . . , ad−1) ∈ J(k + tm0) = J(k), because k >
M − m0. Therefore, (a1, a2, . . . , ad−1, k) ∈ K(T (k)) ⊆ K(T ). Also, (a1, a2, . . . , ad−1) ∈
J(ad) ⊆ J(m0), so (a1, a2, . . . , ad−1, m0) ∈ K(T (m0)) ⊆ K(T ). Finally, because both
(a1, a2, . . . , ad−1, k) and (a1, a2, . . . , ad−1, m0) are in K(T ), we also have (a1, a2, . . . , ad) ∈
K(T ). This completes the induction step, and the proof of the Theorem. �

3. Prime Boxes of Protosets

In this section, we interpret the results of the previous section in terms of tiling boxes
with polyominoes, and make the connection to Klarner and Göbel’s result.

Let T be a protoset of d-dimensional polyominoes, and let

J = {(a1, a2, . . . , ad) | T tiles an a1 × a2 × · · · × ad box } .

As we have seen above, J is a d-dimensional Klarner system.

3.1. Definition. A prime box of the protoset T is an a1 × a2 × · · · × ad box that can be
tiled by T , and for which the corresponding d-tuple, (a1, a2, . . . , ad), is a prime of J .

In many cases, indeed, all cases considered in this paper, the prototiles in T may be
rotated and reflected. In such a case, the corresponding Klarner system, and therefore
also its set of primes, is invariant under permutation of coordinates. We will consider two
boxes to be the “same” prime if they have the same dimensions up to permutation.

3.2. Definition. A box is a strong prime of the protoset T if it can be tiled by T , but
cannot be tiled by smaller boxes, each of which can be tiled by T .

3.3. Definition. If P is a polyomino, we say that a box is a [strong ] prime of P if it is a
[strong] prime of the singleton protoset {P}.

3.4. Remark. Our notion of “strong primality” corresponds to Klarner and Göbel’s
notion of “primality”. The reader should be alerted to this difference in terminology.

A simple reformulation of Definition 3.1 gives

3.5. Definition. A box is a prime of the protoset T if it can be tiled by T , but cannot
be split into two smaller boxes, both of which can be tiled by T .
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From this, it becomes clear that “strong primality” is indeed a stronger condition than
“primality”. Finally, rephrasing Theorem 2.7 above, we have

3.6. Theorem. Any protoset of d-dimensional polyominoes has a finite set of prime

boxes. �

Klarner and Göbel [22] prove that every protoset has a finite set of strong primes.
Unfortunately, their proof appears to have a gap in d ≥ 3 dimensions. This is repaired
by Klarner in his unpublished note [20]. Since every strongly prime box of a protoset T
is a prime of T , Theorem 3.6 extends the result of Klarner and Göbel. In fact, Klarner
mentions at the end of his note [20] that an alteration of his argument can obtain this
stronger result. Our approach simplifies the proof and simultaneously obtains the stronger
statement.

Difference between primes and strong primes.

As remarked above, every strongly prime box is a prime box. It is natural to ask if,
for any protoset, it has prime boxes that are not strongly prime. Indeed, there are such
protosets for which this phenomenon occurs, even in fairly simple cases. In 3 (or more)
dimensions, it can happen even for a singleton protoset. This notion has been considered
briefly by Klarner [21]. In particular, he gives Singmaster’s example (3.7) and states
Proposition 3.10 (without proof).

3.7. Example. (Singmaster) Let P be a 1×3×4 box. Then P tiles a 5×5×12 box, (we
leave the construction to the reader) but cannot do so with a plane of cleavage (a plane
that “decomposes” the box into two smaller boxes, but without intersecting the interior
of any tile). Thus the 5× 5× 12 box is a prime of P, but not a strong prime. Since P is
itself a box, its only strong prime is itself. The 5× 5× 12 box is the only other prime.

There are also cases in 2 dimensions of prime rectangles that are not strongly prime.

3.8. Example. Let T = { , }. Then T tiles a 5× 5 square, but cannot do
so with a line of cleavage. (In fact, the tiling is just a cross-section of the tiling of Example
3.7.) The 5× 5 square is a prime of T , but not a strong prime. The only strong primes of
T are the 1× 3 and 1× 4 rectangles; the 5× 5 square is the only other prime.

3.9. Question. Is there a singleton protoset in 2 dimensions (in other words, a 2-
dimensional polyomino) which has a prime rectangle that is not strongly prime?

Here we do not know the answer; for every polyomino we have examined, all known
primes are strongly prime. However, Klarner has shown that no rectangular polyomino
has a prime rectangle that is not strongly prime. For completeness, we sketch the proof.

3.10. Proposition. (Klarner) If P is a rectangular a × b polyomino, then it has only

itself as a prime rectangle.

Proof. If a rectangle can be tiled by a × b rectangles, then it can be tiled by a × 1
rectangles, so one side must be a multiple of a. Similarly, one side (perhaps the same side)
must be a multiple of b. Also, by considering how the a× b rectangles fit along a side, we



6 MICHAEL REID

see that each side length has the form ax+ by for some x, y ≥ 0. Thus, if a rectangle can
be tiled by a× b rectangles, we have either

(1) one side is a multiple of a and the other a multiple of b, or
(2) one side is a multiple of both a and b, and the other has the form ax+ by for some

positive integers x and y.
It is not necessary to allow x = 0 or y = 0 in case (2), since the resulting rectangles

also occur in case (1). In case (1), the rectangle can be divided into a × b rectangles, all
oriented in the same direction. This division has lines of cleavage except in the trivial case,
when the rectangle is itself an a× b rectangle, which is the only prime in case (1). In case
(2), the rectangle can then be cut into two rectangles of type (1). This shows that these
rectangles can indeed be tiled by an a× b rectangle, and also that they are not prime. �

See [3] for a nice generalization of this result.

4. Unboundedness of number of primes

In this section, we consider protosets that are invariant under rotations and reflections.
As described in the previous section, two prime boxes are considered to be the “same” if
they have the same dimensions up to permutation. We will show that there is no upper
bound to the number of primes in 2 (and therefore higher) dimensions. While this is quite
easy to do for general protosets, we will also prove it in the restricted case of singleton
protosets.

4.1. Proposition. For any n > 0, there is a protoset with exactly n prime rectangles.

Proof. Take T to be the collection of rectangular polyominoes of dimensions 2k×22n−2−k

for 0 ≤ k < n. It is immediate that the set of strong primes is exactly the set of rectangles
in T . In fact, there are no other prime rectangles for T . If T tiles an a× b rectangle, then
its area must be a multiple of 22n−2. Let 2α and 2β be the largest powers of 2 dividing
a and b, respectively. There is no loss of generality to assume that α ≤ β. If α ≥ n − 1,
then both a and b are multiples of 2n−1, so the rectangle can be tiled by the 2n−1 × 2n−1

square, which is in T . If α < n− 1, then β > (2n− 2)−α, so a is a multiple of 2α and b is
a multiple of 2(2n−2)−α, whence the rectangle can be tiled by the 2α×2(2n−2)−α rectangle,
which is in T . �

The number of prime rectangles for a protoset is unbounded, even when we only consider
singleton protosets. We prove this by extending a result of Walkup [31, Thm. 1].

4.2. Theorem. Let P denote the (8n− 4)-omino . Then P has exactly n
primes, specifically, the rectangles 4(n+ k)× (8n− 4), for 0 ≤ k < n.

Note that, in the case n = 1, the polyomino becomes the T -tetromino, and the Theorem
is exactly Walkup’s result [31, Thm. 1]. We prove Theorem 4.2 in several steps. (In the
following, our illustrations will use the case n = 3.)

4.3. Proposition. If P tiles a rectangle, then both sides are multiples of 4.
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Proof. In the case n = 1, the statement reduces to Walkup’s result [31, Thm. 1]. So we
now suppose that n > 1. Consider the ways that P can fit along the edge of a rectangle:

Figure 4.4. Four ways that P can fit along the edge of a rectangle.

In the first case, the indicated square cannot be filled. In the second and third cases,
there is only one way to fill the marked square:

Figure 4.5. Only way to fill the marked square in second and third cases of 4.4.

In the fourth case, there are eight ways to fill the marked square:

Figure 4.6. Eight ways to fill the marked square in the fourth case of 4.4.
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Of these eight cases, the first two can indeed occur along an edge of a rectangle. In the
next five cases, the marked square cannot be filled. Finally, in the last case, there is only
one way to fill the marked square, and this creates a hole that cannot be filled.

Figure 4.7. The eighth case of Figure 4.6 forces a hole.

Thus this case cannot occur. This shows that the tiles along the edge of the boundary
must occur in pairs

Figure 4.8. Tiles along the edge must occur in pairs.

each of which covers a multiple of 4 squares along the edge (the second case covers 4n
squares). It follows that each edge of a rectangle tiled by P is a multiple of 4. �

4.9. Proposition. If P tiles a rectangle, then one side is a multiple of 8n− 4.

Proof. In the case n = 1, the statement is the same as the previous proposition, so we
assume that n > 1. First note that P itself can be tiled by 2n− 1 T -tetrominoes.

Figure 4.10. Decomposition of P into T -tetrominoes.

Therefore, from a tiling of a rectangle by P, we deduce a tiling of the rectangle by T -
tetrominoes. Position the rectangle in the coordinate plane with edges parallel to the axes
and so that one (and hence all) of its corners has both coordinates even. Define a block to
be a 2× 2 square, each of whose corners has both coordinates even. Walkup [31, Thm. 2]
shows that every T -tetromino in the rectangular tiling covers 3 squares from one block and
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1 square from an adjacent block. Therefore, in the tiling of the rectangle by P, each tile
must be aligned to the blocks as in Figure 4.11 (perhaps rotated and/or reflected).

N

T

Figure 4.11. Alignment of P to blocks.

This shows that every “notch” (indicated by ‘N’) must be filled with the “toe” (indicated
by ‘T’) of a different copy of P. Now we can deform each P by removing its “toe” and filling
in its “notch”, to obtain a tiling of the rectangle by 2× (4n− 2) rectangles. Consequently,
one of the edges of the rectangle must be a multiple of 4n − 2. Since it is also a multiple
of 4, this side is a multiple of 8n− 4. �

4.12. Proposition. If P tiles a rectangle, then each side is at least 4n in length.

Proof. Since each side must be a multiple of 4, it suffices to show that P cannot tile a
rectangle with a side ≤ 4n − 4. If it tiles a rectangle with height ≤ 4n − 4, then it can
only accommodate tiles in the horizontal orientation. Now consider how the upper left
corner can be filled.

Figure 4.13. Two ways to fill the upper left corner of a rectangle.

In the first case, the marked square cannot be filled. In the second case, the marked cell
cannot be filled by a horizontally oriented tile, a contradiction. Thus the rectangle cannot
be tiled. �

4.14. Proposition. P tiles a 4(n+ k)× (8n− 4) rectangle for 0 ≤ k < n.

Proof. In fact, it tiles such a rectangle for any k ≥ 0. Figure 4.15 shows half of a
symmetric 4n× (8n− 4) rectangle. (This tiling was given by Golomb in [12, Fig. 5].)

Figure 4.15. Half of a 4(n+ k)× (8n− 4) rectangle.
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Half of a symmetric 4(n+ k)× (8n− 4) rectangle is obtained by appending k copies of the
2-tile shape shown with dashed lines. �

Proof of Theorem 4.2. We have shown that each of these rectangles, 4(n+k)×(8n−4),
for 0 ≤ k < n, can indeed be tiled by P. First we will show that these are prime rectangles.
If an a × b rectangle can be tiled by P, then one side, say b, is a multiple of 8n − 4, and
thus at least 8n − 4. Since both sides are at least 4n, the smallest rectangle than can be
tiled by P is 4n× (8n− 4). Now we see that a 4(n+ k)× (8n− 4) is prime (for 0 ≤ k < n)
for the simple reason that it is too small to contain even two rectangles that can be tiled
by P. This also shows that these rectangles are strongly prime.

Next we show that any a × b rectangle that can be tiled by P, can be dissected into
4(n + k) × (8n − 4) rectangles for 0 ≤ k < n. As above, one side of the rectangle, say
b, is a multiple of 8n − 4. Thus the a × b rectangle can be dissected into a × (8n − 4)
rectangles. Moreover, Propositions 4.3 and 4.12 show that a is a multiple of 4 and a ≥ 4n,
so we may write a = 4(nt + k), where 0 ≤ k < n, and t ≥ 1. Now we can dissect the
a×(8n−4) rectangle into t−1 rectangles of dimensions 4n×(8n−4), and a single rectangle
of dimensions 4(n+ k)× (8n− 4). �

5. Primes of some small polyominoes

In this section, we determine the prime rectangles of several small polyominoes. For
each protoset (which will always be a singleton in this section), there are two tasks. The
first is to show that each alleged prime box can indeed be tiled by the protoset. This is
usually done by exhibiting a tiling, although it may be conceivable to prove the existence
of a tiling without explicitly giving it. For reasons of space, we will do even less here,
namely, will we simply assert that the rectangles can be tiled. (All tilings are available
from the author on request.) For a given rectangle, it is always a finite computation to
find a tiling (or show that one does not exist).

The second task is to show that certain other boxes cannot be tiled by the protoset.
This task accomplishes two things; it shows that there are no further primes, and it shows
that each purported prime is indeed prime, because in any splitting into two smaller boxes,
one of the smaller boxes can’t be tiled. It is possible for a tiling of a box to be known,
without knowing if the box is prime. In fact, this has happened historically, as in Example
5.1 below, where the 9×15 rectangle was once believed to be prime. Also, in Examples 5.2
and 5.13 below, some tilings were found by non-exhaustive methods, and were considered
to be “possible primes”. For a given box, it is a finite computation to show that it can’t
be tiled (or to find a tiling). However, there may be instances where it is required to show
that an infinite collection of boxes cannot be tiled. In some cases, this can be accomplished
by a finite computation, but in other cases, it may require a more theoretical result.

Finally, after the set of primes has been determined, one wants to know which of the
primes are strongly prime. This is always a finite computation, because it amounts to
determining which primes can be tiled by the remaining prime boxes. However, this is
rather unsatisfactory, and we’d like to see a better method.

The examples below give a good illustration of the variety of methods involved.
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5.1. Example. Let L5 be the pentomino . L5 tiles a 2 × 5 rectangle (easy)
and a 7× 15 rectangle. See [13, Fig. 164] [25, Fig. 11] [26, Fig. 9] for constructions of the
latter. These two rectangles are its only primes. In particular, the 9× 15 rectangle of [18,
22] is not prime; it can be constructed as (2 + 7) × 15, the 2× 15 component itself being
constructed as 2× (5 + 5 + 5).

To show that L5 has no further primes, one can verify that it does not tile any rectangle
of width 3 and cannot tile any 5 × (2n + 1) rectangle. These are proven in slightly more
generality in [26, Lemmas 3.1 and 3.2]. It also follows from these that the 7× 15 rectangle
is indeed prime. Now, using the fact that 2× 5 and 7× 15 are the only primes, it follows
that 7×15 is strongly prime for the simple reason that it cannot be tiled by 2×5 rectangles.

5.2. Example. Let Y5 be the pentomino , which has already been considered
by numerous authors. Y5 has 40 prime rectangles, which are

5× 10,
9× 20, 9× 30, 9× 45, 9× 55,
10× 14, 10× 16, 10× 23, 10× 27,
11× 20, 11× 30, 11× 35, 11× 45,
12× 50, 12× 55, 12× 60, 12× 65, 12× 70, 12× 75, 12× 80, 12× 85, 12× 90, 12× 95,
13× 20, 13× 30, 13× 35, 13× 45,
14× 15,
15× 15, 15× 16, 15× 17, 15× 19, 15× 21, 15× 22, 15× 23,
17× 20, 17× 25,
18× 25, 18× 35, and
22× 25.

Klarner [17, Fig. 2] originally gave the 5 × 10 rectangle. Klarner and Göbel [22] list
10 × 16, 15× 16, 15× 22 and 22 × 25 and several other potential primes, which turn out
not to be prime. Constructions of these rectangles are shown in [2]. Klarner [19] later
gives 9× 20, 9× 30, 10× 14, 11× 20, 11× 30, 13× 20, 13× 30 and 14× 15 (without tilings).
Haselgrove [15] gives the 15× 15 square; she also shows that 9× 25 and 13× 15 cannot be
tiled by Y5. Chvátal, Klarner and Knuth [4, Problem 7] give the 12×80 rectangle (without
its tiling). Bitner [1] gives tilings of 12× (50 + 5k), which are prime for k = 0, 1, 2, . . . , 9.
He also shows that 12× 5n cannot be tiled by Y5, for n < 10. Scherer [29] gives tilings of
the 9× 20, 9× 30, 10× 14, 11× 20 and 14× 15 rectangles (these had been listed earlier by
Klarner [19]) and several other rectangles that turn out not to be prime.

To show that these rectangles are all prime, and to show that the list of primes is com-
plete, we must demonstrate that certain other rectangles cannot be tiled by Y5. Although
we will not work through the computations, we will describe what is involved. We must
show that Y5 cannot tile any rectangle of width 6, 7 or 8. That it does not tile a rectangle of
width 7 is easy; it cannot even tile the first row. Widths 6 and 8 are slightly more difficult;
in both cases, Y5 tiles an infinite half strip of that width. However, a calculation based
upon [26, Prop. 2.1] shows that it cannot tile any rectangle of width 6 or 8. It also follows
from these calculations that Y5 cannot tile any rectangle of width 1, 2, 3 or 4, although that
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is easy to show directly. We must also show that Y5 cannot tile any rectangle of dimensions
5× k, where k is not a multiple of 10. This type of calculation also proceeds as described
in [26, Prop. 2.1]. Lastly, we must show that several individual rectangles cannot be tiled
by Y5. These are 9 × 25, 9 × 35, 10 × 18, 10 × 22, 11 × 15, 11 × 25, 12 × 25, 12 × 30, 12 ×
35, 12× 40, 12 × 45, 13× 15, 13 × 25 and 15 × 18. Each of these is a straightforward but
tedious finite computation. It follows from the impossibility of tiling these rectangles (and
also the existence of some tilings) that certain others cannot be tiled by Y5, specifically,
9× 10, 9× 15, 10× 11, 10× 12, 10× 13, 10× 17, 12× 15 and 12× 20. (For example, if 9× 10
could be tiled, then so could 10× 18, so it not necessary to check that the former can’t be
tiled. Similarly, if 10× 17 could be tiled, then so could 10× 22, since 10× 5 can be tiled.)

We will show that these prime rectangles are all strongly prime. We do not have a
particularly nice way to do this; perhaps some reader will find a more systematic method.

5.3. Proposition. Suppose a rectangle is decomposed into (n > 1) smaller rectangles, in

such a way that does not have a line of cleavage. Assume for convenience that the rectangle

is oriented with its sides parallel to the coordinate axes. Then there is a vertical line that

intersects the interior of at least 3 rectangles in the decomposition. In particular, the height

of the rectangle is the sum of (at least) 3 heights of rectangles in the decomposition.

Proof. Inside the large rectangle, draw all horizontal edges between rectangles of the
decomposition. If there is a horizontal gap between these internal edges, as in Figure 5.4,
then there is a rectangle that spans the height of the big rectangle.

gap

Figure 5.4. Horizontal gap between horizontal edges.

One of its vertical edges is a line of cleavage of the decomposition. This contradiction
shows that there cannot be any horizontal gaps.

Several possibilities remain. If there is only one horizontal edge, then it must span the
width of the rectangle, and thus is a line of cleavage, a contradiction. Thus there are at
least two horizontal edges. If there is one that overhangs another, as in Figure 5.5, then a
vertical line that intersects both also intersects (at least) 3 rectangles of the decomposition.

Figure 5.5. Vertical line intersects (at least) 3 rectangles.
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Finally, if no horizontal edge overhangs any other, then the rightmost endpoint of one
horizontal edge must lie directly above or below the leftmost endpoint of another horizontal
edge, as in Figure 5.6.

Figure 5.6. Vertical line is a line of cleavage.

But then the vertical line through these endpoints is a line of cleavage, since it does not
intersect any other horizontal edges. This proves the proposition. �

Since the smallest edge of a rectangle that can be tiled by Y5 is 5, Proposition 5.3 shows
that any prime rectangle that is not strongly prime, must have smallest dimension at least
15. Moreover, if the width of such a rectangle is 15, its decomposition into primes must
have three 5× 10 rectangles situated as in Figure 5.7. But in that case, the tiling can be
rearranged to give a tiling with a line of cleavage.

5 × 10

5 × 10

5 × 10

A B

5 × 10

5 × 10

5 × 10

A B

Figure 5.7. Rearrangement of a tiling of width 15 rectangle.

This shows that the rectangle is not prime, a contradiction.
Neither 17 nor 18 can be written as a sum of three (or more) sides of primes. Therefore,

the 17× 20, 17× 25, 18× 25 and 18× 35 rectangles are all strongly prime.
The only way to express 22 as a sum of three (or more) sides of primes is 5 + 5 +

12. However, even the shortest prime of width 12 (12 × 50) is too long to occur in a
decomposition of 22× 25. Therefore this prime is also strongly prime.

5.8. Example. Let G6 be the hexomino . The primes of G6 are
9× 12, 9× 20, 9× 28,
12× 13, 12× 14, 12× 17, 12× 19, 12× 21, 12× 24, 12× 25, 12× 29,
15× 28, 15× 32, 15× 36, 15× 40, 15× 44, 15× 48, 15× 52,
16× 18, 16× 27, 16× 30, 16× 33, 16× 39, 16× 42,
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20× 21 and 20× 24.

The 9×12 rectangle was originally given by Klarner [17, Fig. 3]. We leave to the reader
the task of finding tilings of these rectangles. To prove that the list is complete, we first
need a theoretical result.

5.9. Theorem. If G6 tiles a rectangle, then one side of the rectangle is a multiple of 4.

Proof. See [28, Thm. 5.4]. �

To finish the proof of completeness, one must also show that G6 cannot tile any rectangle
of width 6, 7, 8, 10 or 11, and that it cannot tile rectangles of sizes 9 × 16, 12 × 12, 12 ×
20, 15× 16, 15× 20, 15× 24, 16× 21 and 16× 24. These are also left to the reader. All of
the primes are strongly prime; this follows easily from Proposition 5.3.

5.10. Example. Let D6 be the hexomino . The primes of D6 are 4 × 6 and
5× 12. To show that this list is complete, we need two theoretical results.

5.11. Proposition. If D6 tiles a rectangle, then one side is a multiple of 6.

Proof. If a rectangle can be tiled by D6, then its area must be a multiple of 6. Therefore,
it suffices to consider rectangles with dimensions (6m+3)×(6n+2) and (6m+3)×(6n+4).
Let cij denote the unit square with lower left corner at the point (i, j), where i, j ∈ Z.
Number the squares of the infinite grid by

cij 7→







1 if 3 divides i and i+ j is even,
−1 if 3 divides i and i+ j is odd,
0 otherwise (i.e. 3 does not divide i).

It is easy to show that every possible placement of a D6 tile covers a total of 0. However,
(6m + 3) × (6n + 2) and (6m + 3) × (6n + 4) rectangles can be placed so they cover a
non-zero total, which shows that they cannot be tiled by D6. �

A more difficult result is the following, which is stated without proof in [28, Thm. 7.1].

5.12. Theorem. If D6 tiles a rectangle, then one side is a multiple of 4.

Proof. We use the boundary word method, in particular, a representation proof, as
described in [28]. It suffices to show that D6 cannot tile any rectangle with dimensions
(12m+ 6)× (12n+ 6). Consider the permutations

x = (1, 5, 28, 23, 26, 16, 11, 15, 14, 24, 2, 12)(3, 19)(4, 32)
(6, 31, 18, 21, 7, 20)(8, 9, 13, 27, 22, 10)(17, 29, 25, 30),

y = (1, 5, 13, 27, 17, 29, 18, 21, 28, 23, 3, 19)(2, 12, 22, 10)
(4, 11, 15, 7, 20, 25, 30, 8, 9, 14, 24, 32)(6, 31, 26, 16)

of S32. One easily checks that the boundary word of each possible orientation of D6 is
the identity element of S32, that is x4yx−1yx−2y−1x−1y−1 = y4x−1y−1x−1y−2xy−1x =



KLARNER SYSTEMS AND TILING BOXES WITH POLYOMINOES 15

x−4y−1xy−1x2yxy = y−4xyxy2x−1yx−1 = 1. However, the boundary word of a (12m +
6)× (12n+6) rectangle is non-trivial, i.e. x12m+6y12n+6x−(12m+6)y−(12n+6) 6= 1. (For this
latter assertion, it is useful to note that x12 = y12 = 1.) �

To show that 4× 6 and 5× 12 are the only primes, it remains to show that D6 cannot
tile any rectangle of width 2, 3 or 7. This is easy, as it cannot even tile the first row of
such a rectangle. Moreover, it is now easy to show that both primes are strong primes.

5.13. Example. Let L6 be the hexomino . The primes of L6 are 2 × 6, 7 ×
12, 8× 15, 9× 14, 9× 16, 9× 34, 10× 15, and 11× 18.

The 9× 14 rectangle was given in [25, Fig. 13] and [26, Fig. 11]. The 2× 6, 7× 12 and
9× 16 rectangles were given in [9], along with some larger rectangles that are not prime.

To verify completeness of this list, one must show that L6 cannot tile rectangle of width
3 or 5, cannot tile any rectangle of the form 4 × (6n + 3), 6 × (2n + 1) or 7 × (12n + 6),
and cannot tile rectangles of sizes 9 × 18, 9 × 20 and 9 × 22. The eight prime rectangles
are all strongly prime, but we leave the details to the reader.
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