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Abstract. A refinement of the rank 1 abelian Stark conjecture has been formulated by
B. Gross. This conjecture predicts some p-adic analytic nature of a modification of the Stark

unit. The conjecture makes perfect sense even when p is an archimedean place. Here we

consider the conjecture when p is a real place, and interpret it in terms of 2-adic properties
of special values of L-functions. We prove the conjecture for CM extensions; here the original

Stark conjecture is uninteresting, but the refined conjecture is non-trivial. In more generality,
we show that, under mild hypotheses, if the subgroup of the Galois group generated by

complex conjugations has less than full rank, then the refined conjecture implies that the

Stark unit should be a square. This phenomenon has been discovered by Dummit and Hayes
in a particular type of situation. We show that it should hold in much greater generality.

1. Introduction

Let k be a number field and O its ring of integers. The zeta function for k is defined by
an infinite series

ζk(s) =
∑

a⊆O
(Na)−s

which converges absolutely on the half plane ℜ(s) > 1. It is a classical result that the
above definition has a meromorphic continuation to the entire complex plane, with only
a simple pole at s = 1. Moreover, ζk has a functional equation that relates ζk(s) and
ζk(1− s). Under this functional equation, the formula for the residue at s = 1 transforms
into a simple form of the leading coefficient of the Taylor series at s = 0, namely

ζk(s) = −hkRk

wk
sn +O(sn+1) near s = 0 (1)

where hk is the class number, Rk is the regulator and wk is the number of roots of unity
in k. Also, n = r1 + r2 − 1, where r1 [respectively, r2] is the number of real [respectively,
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complex] places of k. In particular, n is the rank of the unit group O∗, by Dirichlet’s unit
theorem.

In a series of papers [11, 12, 13, 15] H. Stark developed a conjecture about the leading
coefficient of the Taylor series at s = 0 of Artin L-functions. He conjectured that this
leading coefficient should have an analogous form, namely that it should be a product of
an algebraic number with a transcendental number (the “Stark regulator”). However, this
information is subtle, and it is not fully understood, even conjecturally, the precise form
this coefficient should have.

Stark’s Conjecture

In the case of abelian L-functions, and especially when the order of vanishing is 1, a
more precise conjecture is available. In order to state the conjecture, we will introduce
some notations and conventions.

Let K/k be an abelian extension of global fields with Galois group G. Let S be a finite
set of places of k that contains all the archimedean places and any places that ramify in
K. Suppose that #S ≥ 2 and that S contains a place, p0, that splits completely in K.
Also let P0 be one of the places of K lying over p0. The hypotheses on S imply that

for any character, χ ∈ Ĝ, the L-function LS(χ, s) vanishes at s = 0 (see Proposition 4.1
below). Therefore we are interested in the coefficient of s1 in the Taylor series of LS(χ, s),
or equivalently, the value of L′

S(χ, 0).
Let UK denote the S(K)-units of K, i.e. those elements of K that are units at every

place not lying over a place in S. If #S ≥ 3, define

U (p0) =
{
x ∈ UK

∣∣ |x|P = 1 for all P not dividing p0
}
,

but if #S = 2, say S = {p0, p1}, then choose a place, P1 of K lying over p1, and define

U (p0) =
{
x ∈ UK

∣∣ |xg|P1
= |x|P1

for all g in G
}
.

Clearly, this latter definition does not depend upon the choice of P1 of K lying over p1.

Conjecture 1.1. (The rank 1 abelian Stark conjecture) With the notation above, there
is ε ∈ U (p0) such that

• L′
S(χ, 0) = − 1

wK

∑

g∈G

χ(g) log |εg|P0
for all χ ∈ Ĝ, and

• K(ε1/wK ) is abelian over k.

The quantity ε is called the Stark unit. The conditions imposed on it by Conjecture
1.1 determine its absolute value at every place of K. Therefore, ε is uniquely determined,
up to a multiple of a root of unity in K, and the truth of the conjecture is independent of
the choice of ε. In general however, there seems to be no canonical choice among the wK

possibilities.
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Conjecture 1.1 is known to be true when the base field k = Q, where it amounts to
classical results of Stickelberger on the factorization of Gauss sums. Stark has also proved
it when the base field, k, is a quadratic imaginary field, by using the theory of complex
multiplication. These two cases form the foundation of theoretical evidence in support
of the conjecture. Conjecture 1.1 has also been verified numerically in many cases, for
example, see [5, 14].

The Local Stark Conjecture

Benedict Gross has formulated a conjectural generalization of formula (1) above, where
the regulator has been replaced by a determinant in a group ring. The group elements are
obtained as local reciprocity maps applied to various units. By analogy, he formulates the
“local Stark conjecture”, which predicts the value of a local reciprocity map on a modified
Stark unit. This can be viewed as an attempt to understand the p-adic analytic nature of
the Stark unit.

Let K/k and S be as above, and let L be an overfield of K that is abelian over k and
unramified outside S. Let ε be the hypothetical Stark unit for K/k. As noted above, ε is
only determined up to a root of unity in K. Let λ = ε1/wK , and consider the extension
L(λ)/k. This is the compositum of the abelian extension L/k with the (conjecturally)
abelian extension K(λ)/k, and thus is (conjecturally) abelian.

Let q be a place of k which is not in S, nor divides the number of roots of unity in L(λ),
and let ϕq be its Frobenius element in Gal(L(λ)/k), which makes sense, as this extension
is abelian. Now define

εq = λϕq−Nq.

The quantity εq is called the modified Stark unit. Its definition does not depend upon the
choice of the Stark unit, ε, nor on the choice of its wK -th root, λ. Moreover, we claim
that εq ∈ K. To see this, let τ ∈ Gal(L(λ)/k) be an arbitrary element, and note that
(λτ )wK = (λwK )τ = ετ = ε = λwK . Thus, λτ = ζλ, where ζ is some wK -th root of unity.
Now, using the fact that Gal(L(λ)/k) is abelian, we have

ετq = (λϕq−Nq)τ = (λτ )ϕq−Nq = (ζλ)ϕq−Nq = ζϕq−Nqλϕq−Nq = λϕq−Nq = εq.

Therefore, εq is fixed by every τ ∈ Gal(L(λ)/k), whence εq ∈ K, as claimed.

Let θ ∈ C[Gal(L/k)] be the “Stickelberger element” for the extension L/k, with respect
to the exceptional set S. This element is characterized by the condition that

χ(θ) = LS(χ̄, 0) for all χ ∈ ̂Gal(L/k).

A classical result of Siegel [10] shows that the coefficients of θ are all rational. Moreover, the
denominators are bounded, as shown by Barsky [1], Cassou-Noguès [2], and Deligne and
Ribet [3], independently. Specifically, for any A ∈ Z[Gal(L/k)] that annihilates the module
µ(L) of roots of unity in L, they show that Aθ has integral coefficients. In particular, taking
A = wL gives the bound on the denominator.
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Here we will consider elements of the form A = ϕq −Nq, where q is a place of k that
is unramified in L, and does not divide wL. It is easy to see that such an element indeed
annihilates µ(L). Furthermore, we even have

Proposition 1.2. Let L/k be an abelian extension of global fields, and S a finite set
of places of k that contains all archimedean places, any places ramified in L, and any
places that divide wL. Then the annihilator of the Gal(L/k)-module µ(L) is generated as
a Z-module by the elements ϕq −Nq, for all q /∈ S.

Proof. See [16, Chapitre IV, Lemme 1.1]. �

Accordingly, let q be a place of k that is not in S and also does not divide wL(λ). Thus
(ϕq−Nq)θ has integral coefficients, so write it as

∑
g n(g) ·g. Since p0 splits completely in

the extension K/k, the decomposition group GP0
is contained in H = Gal(L/K). Let rP0

be the local reciprocity map atP0, for the extension L/K. This is a map rP0
: K∗

P0
→ GP0

.
Thus we can consider the composite map

K∗ →֒ K∗
P0

−→ GP0
→֒ Gal(L/K),

which we will also denote by rP0
.

We may now formulate the local Stark conjecture. See Gross’ paper [7] for the original
formulation, as well as Hayes [9] for a variant.

Conjecture 1.3. (The local Stark conjecture) With the preceding notation, we have

rP0
(εq) =

∏

h∈H

hn(h).

Conjecture 1.3 is an attempt to understand the Stark unit from a p-adic viewpoint.
However, as remarked above, the Stark unit is not uniquely determined. The modified
Stark unit is void of any such ambiguity, which explains its role in the conjecture.

The local Stark conjecture is known when the base field k = Q, (see [6]) from the work
of Gross and Koblitz [8]. It has also been proved by Hayes [9] in the function field case.

Connection to Hayes’ formulation

The original formulation of the local Stark conjecture predicts the value of the local
reciprocity map applied not only to the modified Stark unit, but also to all of its Galois
conjugates as well. We briefly indicate here its connection with Conjecture 1.3, which is
apparently weaker. In fact, we show that 1.3 implies Hayes’ “slightly stronger” version
[9, second form, (1.9)]. The equivalence to both of his versions, as well as Gross’ original
formulation is then clear.

We continue with the notation introduced above. Let L̃ = L(λ), G̃ = Gal(L̃/k), and

let A ∈ Z[G] be an element that annihilates µ(L). From 1.2, A can be lifted to Ã ∈ Z[G̃],

which annihilates µ(L̃). Hayes’ stronger version of the conjecture is:



THE LOCAL STARK CONJECTURE AT A REAL PLACE 5

Conjecture 1.4. If Ã is any such lift, then

rP0
(λÃ) =

∏

h∈H

hn(h),

where Aθ =
∑

g∈G n(g) · g.

As Hayes elucidates, this formulation also provides the values of the local reciprocity
map on Galois conjugates of the modified Stark unit.

Proposition 1.5. Conjecture 1.3 implies Conjecture 1.4.

Proof. Let Ã be any lift of A to Z[G̃] that annihilates µ(L̃). From 1.2, we may write Ã =∑t
i=1 ci(ϕqi

−Nqi), where the qi’s are places of k, but not in a finite set containing S. Then

we find that rP0
(λÃ) =

∏t
i=1 rP0

(εqi
)ci . Now 1.3 evaluates each rP0

(εqi
). Specifically,

write (ϕqi
− Nqi)θ =

∑
g∈G nqi

(g) · g. Then 1.3 gives rP0
(εqi

) =
∏

h∈H hnqi
(h), so that

rP0
(λÃ) =

∏
h∈H hm(h), where the exponent m(h) =

∑t
i=1 cinqi

(h). Finally, 1.4 follows by

noting that the coefficients of Aθ =
∑

g∈Gm(g) ·g are also given by m(g) =
∑t

i=1 cinqi
(g).

�

This argument also shows that in Conjecture 1.3, a finite number of q’s may be omitted,
without weakening the conjecture. This may be useful because, in practice, one often does
not know the field L(λ) explicitly, and thus one does not know wL(λ), but only an upper
bound on it.

2. Statement of Results

Theorem 2.1. Let L/k be a CM extension, i.e. k is totally real, L is totally complex
and is quadratic over its maximal totally real subfield, K. Let S be any finite set of places
of k that contains all the archimedean places, and all places ramified in L. Let ∞k be one
of the real places of k, and ∞K a place K lying over it. Then the local Stark conjecture
for L/K/k at ∞k is true.

In this theorem, we can easily identify the Stark unit. In fact, in most cases, we can
take ε = 1. Thus, Stark’s original conjecture is not interesting in this situation. On the
other hand, the truth of the local conjecture relies on some delicate parity information
involving partial zeta functions. This is where the Deligne-Ribet congruences are used.

For any abelian extension L/k of number fields with Galois group G, we can consider
the subgroup G1 ⊆ G generated by all “complex conjugations”. Since G is abelian, G1 is
simply an elementary abelian 2-group of rank ≤ r = [k : Q]. For a general “large” abelian
extension, where k is totally real of absolute degree r, one expects G1 to have full rank. In
some cases, G1 will collapse; a CM extension is an extreme example, where G1 has rank 1.
We next consider the situation in which G1 is “partially collapsed”, i.e. has rank strictly
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less than r. Here we generally cannot determine the Stark unit. Nevertheless, we have the
following consequence of the local Stark conjecture.

Theorem 2.2. Let k be a totally real field of absolute degree r = [k : Q] ≥ 2, L/k an
abelian extension with Galois group G, and suppose that #G1 ≤ 2r−1. Let S be a finite
set of places of k that contains the archimedean places and any places ramified in L, and
suppose also that #S ≥ 3. Let ∞k be one of the real places of k that ramifies in L, K its
decomposition field in the extension L/k, and ∞K a place of K lying over it. Finally, let
ε ∈ K∗ be the hypothetical Stark unit for K/k, chosen to be positive at ∞K . If the local
Stark conjecture for L/K/k holds, then ε is a square in K.

The theorem above generalizes a result of Dummit and Hayes to a much wider class of
situations. The significance of the result, as they already note, is that the abelian part
of Stark’s conjecture holds automatically. It also simplifies the task of “recognizing” real
numbers as elements of number fields, and simplifies some other computations, as we’ll see
in section 5.

To describe the relation to the Dummit-Hayes situation, it is helpful to separate the
following ingredient that is implicit in their work.

Theorem 2.3. (Dummit-Hayes [4]) With the notation of Theorem 2.2, suppose that,
for almost all primes q of k, the coefficients of (ϕq − Nq)θ are all even. Then the local
conjecture implies that the Stark unit ε is a square in K.

In their situation, k is a totally real field of odd absolute degree r = [k : Q] > 1, S
is the set of archimedean places, and L is the “narrow” Hilbert class field. In this case,
they find that θ = 0, so the hypothesis in the above theorem holds trivially. In our more
general situation, we will use the Deligne-Ribet congruences to obtain the necessary parity
information.

In Theorem 2.2 above, we make an extra hypothesis that #S ≥ 3. This excludes two
cases, namely k = Q, S = {∞, p}, and k a real quadratic field, with S being its two
archimedean places. In these two cases, the statement of Theorem 2.2 generally fails;
however, in both cases, Stark’s conjecture and the local conjecture both hold, so this is
better than our hypothetical theorem.

3. The 2-adic congruences of Deligne-Ribet

In this section, we review the 2-adic congruences of Deligne-Ribet. Their congruences
are much more far-reaching than what we give here; however, this will suffice for our
purposes.

Let k be a totally real number field of absolute degree r = [k : Q], and let f be an ideal
of k. Let f∞ be the (formal) product of all the infinite places of k, and let S(ff∞) be the
ray class group modulo ff∞. For any function e : S(ff∞) → C, the function

L(e, s) =
∑

a

e([a])Na−s
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converges for ℜs > 1 and extends to a meromorphic function on all of C. If e takes its
values in Q, then the previously mentioned result of Siegel shows that L(e, n) is rational
for every integer n ≤ 0. For a prime q not dividing f, let eq denote the function on S(ff∞)
defined by eq(x) = e([q]x). By class field theory, we may identify S(ff∞) with the Galois
group Gal(k(ff∞)/k), where k(ff∞) is the ray class field modulo ff∞. Via this identification,
we may consider complex conjugations of k(ff∞) as elements of S(ff∞).

3.1. Theorem. (Deligne-Ribet [3]) Suppose that e is an odd function, i.e. e(cx) = −e(x),
for every complex conjugation c, and suppose that e takes values in Z. Then for any prime
q not dividing 2f,

∆q(e) = L(e, 0)−NqL(eq, 0)

is an integer divisible by 2r−1. Moreover, it is divisible by 2r, except in the exceptional
case, in which all of the following conditions are satisfied:

• the finite part of the conductor, f, is trivial,
• all units of k have absolute norm +1 down to Q,
• the extension k′/k obtained by taking square roots of all totally positive units of k is

a quadratic extension,
• the prime q is inert in k′, and
• the sum δ(e) =

∑
x∈S(ff∞)/C e(x) is odd, where C ⊆ S(ff∞) is the subgroup generated

by all complex conjugations. Note that for x ∈ S(ff∞)/C, the parity of e(x) is well-defined.
In the exceptional case, ∆q(e) is not divisible by 2r.

4. Proofs

First we concern ourselves with the order of vanishing of L-functions at s = 0. This is
handled by the following.

Proposition 4.1. For a character χ of Gal(K/k), the order of vanishing of LS(χ, s) at
s = 0 is given by

ords=0 LS(χ, s) =





#S − 1, if χ = χ0, and

the number of places in S
that split completely in Kkerχ, otherwise.

Proof. See [16, Chapitre I, Proposition 3.4] for a more general formula which gives the
order of vanishing of Artin L-functions. �

We now show that Stark’s conjecture holds (relatively easily) for K/k in the situation
of Theorem 2.1.

Proposition 4.2 Let k be a totally real field of absolute degree r = [k : Q] > 1, and
K/k be an abelian extension, with K also totally real. Then Stark’s conjecture (1.1) holds
for K/k with respect to any appropriate set S. Moreover, the Stark unit can be taken as
ε = 1, unless r = 2, and S contains only the two archimedean places. Furthermore, in this
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case, we may take ε = uhk/d as the Stark unit, where u is a totally positive fundamental
unit of k, and d = [K : k].

Proof. Each of the r archimedean places splits completely in K. Therefore, if χ is a
non-trivial character, LS(χ, s) vanishes to order at least r, so that L′

S(χ, s) = 0. For the
trivial character, LS(χ, s) vanishes to order #S − 1. Therefore, if #S ≥ 3, then we have
L′
S(χ, s) = 0 for all characters χ, so we may take ε = 1 as the Stark unit.

If #S = 2, this forces r = [k : Q] = 2, and S must consist only of the two archimedean
places of k. In this case, we have L′(χ, s) = 0 for non-trivial characters, while L′(χ0, s) =
−hkRk/wk, from formula (1) of the introduction. Thus we may take ε = uhk/d, where u
is a fundamental unit of k satisfying |u|P0

> 1. Note that, in this case, K/k is everywhere
unramified, so that d = [K : k] divides hk.

The abelian condition in (1.1) is also satified. If ε = 1, this is clear. Otherwise, note
that wK = 2, since K is totally real. Then ε = uhk/d, so that K(

√
ε) ⊆ K(

√
u). which is

the compositum of K and k(
√
u), both of which are abelian extensions of k. �

Proposition 4.3. Let k be totally real of absolute degree r > 1, L/k an abelian
extension with Galois group G, and suppose that G1, the subgroup generated by complex
conjugations, has order ≤ 2r−1. Let S be any finite set of places of k, containing all the
archimedean places, as well as any ramified in L, and let θ ∈ Q[G] be the Stickelberger
element, relative to the set S. If q is any prime of k, not in S, nor dividing wL, then all
coefficients of (ϕq −Nq)θ are even, unless

(1) r = 2,

(2) S contains only the 2 archimedean places of k,

(3) k has a fundamental unit, u, that is totally positive,

(4) hk/d is odd, where d = [LG1 : k] is the degree over k of the fixed field of G1 (note
that LG1 is everywhere unramified, so that d divides hk), and

(5) q is inert in the extension k′ = k(
√
u).

When all 5 conditions are satisfied, then the coefficients of (ϕq −Nq)θ are odd.

Proof. Let G2 be the subgroup of G generated by products of pairs of complex con-
jugations, σ1σ2. Clearly, (G1 : G2) = 1 or 2. If this index is 1, then there is a relation
σ1σ2 · · ·σt = 1, where t is odd. In that case, if χ is any character of G, then χ(σ) = 1
for some complex conjugation σ. Thus L(χ, 0) = 0 for all χ, whence θ = 0. Therefore, all
coefficients of (ϕq −Nq)θ are even, as claimed. Also, conditions (1) – (5) cannot all hold
in this case.

So now suppose that (G1 : G2) = 2. By Fourier inversion, the Stickelberger element is
θ =

∑
g∈Gm(g) · g, where the coefficient m(g) = 1

#G

∑
χ∈Ĝ χ(g)L(χ, 0). Let g0 ∈ G be an

arbitrary element. The coefficient of g0 in (ϕq −Nq)θ is

n(g0) = m(g0ϕ
−1
q )−Nqm(g0) =

1

#G

∑

χ∈Ĝ

(
χ(ϕ−1

q )−Nq
)
χ(g0)L(χ, 0).
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Since L(χ, 0) = 0 unless χ is odd, i.e. χ(σ) = −1 for every complex conjugation σ, we
need only consider odd χ in the above sum. Therefore,

n(g0) =
1

#G

∑

χ odd

(
χ(ϕ−1

q )−Nq
)
χ(g0)L(χ, 0).

Let f be an ideal of k that is divisible by the finite part of the conductor of L/k, as
well as every finite prime in S, but not by any place not in S. Let f∞ be the formal
product of the archimedean places of k, and S(ff∞) the ray class group modulo ff∞. Class
field theory provides an isomorphism S(ff∞) → Gal(k(ff∞)/k), and we have a natural
projection Gal(k(ff∞)/k) → G. Define a function e : G→ Z by

e(x) =





1 if x ∈ g−1
0 G2

−1 if x ∈ σg−1
0 G2

0 otherwise,

where σ is an arbitrary complex conjugation, so that σG2 is the non-identity coset of
G2 in G1. We may also consider e as a function on S(ff∞) by composing with the map
S(ff∞) → G. By construction, e is an odd function. Furthermore, we claim that

e =
1

(G : G1)

∑

χ odd

χ(g0)χ. (2)

To see why, note that every odd character is trivial on G2, and thus is inflated from a
character on G/G2. Of those characters inflated from G/G2, exactly half are non-trivial
on the non-identity coset of G2 in G1. These are precisely the odd characters, so there are
1
2 (G : G2) = (G : G1) of them. It is now clear that (2) holds, when applied to any element

in g−1
0 G2 or in σg−1

0 G2. So suppose that g is some element not in g−1
0 G1. Then there is a

character ψ, trivial on G1, but not on the element g0g. Multiplication by ψ permutes the
odd characters, so we have

∑

χ odd

χ(g0)χ(g) =
∑

χ odd

ψχ(g0)ψχ(g) = ψ(g0g)
∑

χ odd

χ(g0)χ(g).

Since ψ(g0g) 6= 1, the sum is 0, and therefore equation (2) holds on all of G. In a similar
way, we have

eq =
1

(G : G1)

∑

χ odd

χ(ϕ−1
q g0)χ. (3)

By the Deligne-Ribet theorem, ∆q(e) = L(eq, 0) −NqL(e, 0) is divisible by 2r−1, and
is divisible by 2r if we’re not in the exceptional case. From equations (2) and (3), we
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calculate

∆q(e) = L(eq, 0)−NqL(e, 0)

=
1

(G : G1)

∑

χ odd

χ(ϕ−1
q g0)LS(χ, 0)−

Nq

(G : G1)

∑

χ odd

χ(g0)LS(χ, 0)

=
#G1

#G

∑

χ odd

(
χ(ϕ−1

q )−Nq
)
χ(g0)LS(χ, 0)

= #G1n(g0).

Thus, if we’re not in the “exceptional case” of the Deligne-Ribet theorem, then n(g0) is
divisible by 2r/#G1, and is therefore even, as claimed.

In the exceptional case, ∆q(e) is exactly divisible by 2r−1. We claim that #G1 = 2 in
the exceptional case. Firstly, the finite part of the conductor of e is trivial, i.e. f = 1. In
particular, this means that S contains only archimedean places. Secondly, the units of k
have all possible signatures that have norm +1 down to Q. We have an exact sequence

1 −→ U+
k −→ Uk −→ {±1}r −→ S(f∞) −→ S(1) −→ 0

where Uk is the unit group of k, U+
k is the subgroup of totally positive units, Uk → {±1}r

is the “signature” map, and S(m) is the ray class group modulo m. The condition on the
signatures says that the cokernel of the signature map has order 2. Thus the kernel of
S(f∞) → S(1) also has order 2. However, this kernel corresponds exactly to G1, under the
reciprocity map of class field theory. This proves the claim.

Therefore, n(g0) is even, unless r = 2 and we’re in the “exceptional case” of the Deligne-
Ribet theorem, in which case it is odd. In this situation, the finite part of the conductor,
f, is trivial. Therefore, S contains only the 2 archimedean places of k. Secondly, all units
of k have norm +1 down to Q. This means that k has a fundamental unit, u, that is
totally positive. Moreover, q is inert in the extension k′ = k(

√
u). Lastly, δ(e) is odd.

To interpret this condition, we must consider e as a function on S(f∞). From the exact
sequence above, we see that #S(f∞) = 2hk, so that S(f∞) → G is an hk/d to 1 map. Now
it follows that δ(e) = hk/d mod 2. Therefore, we have shown that n(g0) is even, unless
conditions (1) through (5) all hold, in which case it is odd. �

Now we are in a position to prove our main results.

Proof of Theorem 2.1. We place ourselves in the context of 2.1. So let k be totally
real of absolute degree r > 1 and L/k a CM extension with maximal totally real subfield
K. Let G = Gal(L/k) and H = Gal(L/K) = {1, σ}. Let S be a finite set of places of k,
which includes all r archimedean places, and any others ramified in L. Also let ∞k be one
of the real places of k, ∞K a place of K lying over it, and ∞L the unique place of L over
∞K . Finally, let q be a place of k that is not in S, and also does not divide wL.

Let ε be the Stark unit for K/k, with respect to the set S, which is known to exist, from
4.2, and εq the modified Stark unit. Let θ be the Stickelberger element for the extension
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L/k, with respect to S, and write (ϕq−Nq)θ =
∑

g n(g)g. Then the local Stark conjecture

(1.3) predicts that

r∞K
(εq) =

∏

h∈H

hn(h).

Since H = {1, σ}, the right hand side simplifies to σn(σ), which is either 1 or σ, depending
on the parity of the coefficient n(σ). The left hand side, r∞K

(εq) is either 1 or σ, depending
on the sign of εq, with respect to the real embedding corresponding to ∞K . Thus we must
show that sgn∞K

(εq) = +1 if and only if the coefficient n(σ) is even.
First suppose that #S > 2. Then 4.2 shows that ε = 1, whence εq = 1. Also, 4.3 shows

that n(σ) is even, so we are done in this case.
Now suppose that #S = 2, which requires k to be real quadratic, and S to consist only

of the two archimedean places. Moreover, k has a totally positive fundamental unit, u.
This is only determined up to inversion, so we choose u by requiring it to be greater than
1 with respect to the real embedding corresponding to ∞k. Then we may take ε = uhk/d,
where d = [K : k], so that

εq =
[(√

u
)ϕq−1

u(1−Nq)/2
]hk/d

.

Now (
√
u)

ϕq−1
= ±1, depending upon whether q splits or is inert in the extension k′ =

k(
√
u). Also, sgn∞K

(u) = +1, so the power of u can be ignored. Therefore, sgn∞K
(εq) =

+1, unless q is inert in k′ and hk/d is odd. However, these are precisely conditions (4) and
(5) of 4.3 (conditions (1), (2) and (3) are already satisfied), so n(σ) is even precisely when
sgn∞K

(εq) = +1. Thus we have proven the refined Stark conjecture for CM extensions. �

Proof of Theorem 2.2. We place ourselves in the context of 2.2. Let k be totally real
of absolute degree r ≥ 2, and let L/k be an abelian extension with Galois group G. Let S
be a finite set of places of k that contains all the archimedean places, and any ramified in
L. We also assume that #S ≥ 3. Let ∞k be an archimedean place of k that ramifies in
L; let σ be the corresponding complex conjugation, K its fixed field, and ∞K one of the
places of K over ∞k. Let ε ∈ K∗ be the hypothetical Stark unit for the extension K/k,
with respect to the exceptional set S. We choose ε so that it is positive at ∞K .

Suppose that G1, the subgroup of G generated by all complex conjugations does not
have full rank, i.e. has order less than 2r. We must show that ε is a square in K. Let Q
be any place of K having degree 1 over k, and which also does not lie over any place in S,
nor divide wL. Note that the set of such Q has density 1. Let q be the place of k under
Q. We are assuming that the local Stark conjecture holds, so that r∞K

(εq) =
∏

h∈H hn(h),
where H = Gal(L/K) = {1, σ}, and (ϕq −Nq)θ =

∑
g∈G n(g)g. Since H has order 2, the

product simplifies to σn(σ). Moreover, the coefficient n(σ) is even, from 4.3. Thus εq is
positive at ∞K . However,

εq =
(√
ε
)ϕq−1

ε(1−Nq)/2.

The factor (
√
ε)

ϕq−1
is ±1, depending on whether Q splits or is inert in the extension

K ′ = K(
√
ε). Also, ε was chosen to be positive at ∞K , so the second factor does not
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affect the sign. Therefore, Q splits in K ′, and since the set of such Q has density 1, this
means that the extension K ′/K has degree 1, i.e. ε is a square in K. The proof of Theorem
2.2 is complete. �

Here we have used the same argument as Dummit-Hayes [4]. In their situation, θ = 0,
in fact, they are in the situation that (G1 : G2) = 1, in the notation of (4.3). Thus, the
evenness of the coefficients of (ϕq −Nq)θ is trivial in their situation, whereas, in our more
general setting, we needed the 2-adic congruences of Deligne-Ribet.

5. A Computational Example

Let k be the totally real cubic field Q(α) where α3−α2−4α+3 = 0. It has discriminant
257 (and thus is not normal over Q), its ring of integers is Z[α], it has class number 1, and
its unit group is generated by α− 1, α− 2 and −1. The three real places ∞1,∞2 and ∞3

correspond to the real embeddings

α 7→ 2.19869124351 . . . α 7→ 0.71353793496 . . . α 7→ −1.91222917848 . . .

respectively.
The rational prime 907 splits completely in k as pp′p′′. We only concern ourselves here

with p = (−2α2 + α + 16). The ray class group modulo p∞1∞2∞3 is (Z/6Z) × (Z/2Z);
let L be the corresponding ray class field and G = Gal(L/k) ∼= S(p∞1∞2∞3). The ray
class group modulo p∞2∞3 is cyclic of order 6; let K be the corresponding ray class
field. Therefore, ∞1 ramifies in L, and K is the fixed field of the corresponding complex
conjugation. Let G1 be the subgroup of G generated by all complex conjugations. Since
#G is not divisible by 8, G1 does not have full rank; in fact, S(p) has order 3, so G1 has
order 4.

Let ∞k be the archimedean place ∞1, and let ∞K be one of the places of K lying over
∞k. Let ε ∈ K∗ be the hypothetical Stark unit for K/k, chosen to be positive at ∞K . We
are in the situation of Theorem 2.2, so ε should be a square in K.

The quadratic subfield of K/k can be determined more or less by inspection. In fact,
the ray class group S(∞2∞3) has order 2, so the corresponding ray class field is this
intermediate quadratic field. Then we find that it is k(

√
α− 1): this extension is unramified

at 2 because (α2+α+
√
α− 1)/2 is an algebraic integer. We also note that p splits in this

extension.
The ray class group S(p∞2∞3) is generated by c, the class of (α2−3). Let σ ∈ Gal(K/k)

be the corresponding generator of the Galois group, and let χ be a generator of ̂Gal(K/k)
such that χ(σ) = eπi/3. Using Pari/GP functionality, we computed to 70 decimal places
the values

L′
S(χ, 0) = −13.9915206850602194828711 . . .− i16.4340680794801847538473 . . .

L′
S(χ

5, 0) = −13.9915206850602194828711 . . .+ i16.4340680794801847538473 . . .

where S = {p,∞1,∞2,∞3}. The corresponding values for χ0, χ
2, χ3 and χ4 are 0, from

4.1 above; for χ3, we use the observation that p splits in k(
√
α − 1). Then, by Fourier
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inversion, we compute |εσj |∞K
= exp(−(ζ−jL′

S(χ, 0) + ζjL′
S(χ

5, 0))/3), where ζ = eπi/3.
This gives

|ε|∞K
= 11245.0179055784041314196980109142293968697496997336795371021 . . . ,

|εσ|∞K
= 1400099.4922060985114287168762610205589025535118451986628069 . . . ,

|εσ2 |∞K
= 124.5084271063312569081984544703408130256152673256111727629 . . . ,

|εσ3 |∞K
= 0.000088928271026044535287783093461948435705330453989476067 . . . ,

|εσ4 |∞K
= 0.000000714234956563213465291341915531598285235532586548534 . . . ,

|εσ5 |∞K
= 0.008031584875343349131218767103184149317367849380542708958 . . . .

We have chosen ε to be positive with respect to the embedding defined by ∞K . In fact,
we claim that ε is totally positive. To see this, let τ ∈ Gal(K/k) be an arbitrary element,
and write ε1−τ = (λ1−τ̃ )2, where λ =

√
ε and τ̃ is any lift of τ to Gal(L/k). One shows

that λ1−τ̃ ∈ K, by a calculation similar to that which shows that the modified Stark unit
is in K. Thus, for any τ , we have ε1−τ ∈ (K∗)2, which shows that ε is totally positive.

Let sm be the m-th symmetric function of the values above. Using Pari/GP, we were
able to identify the numeric values as elements of k:

s1 = s5 = 231185α2 + 277121α− 315439,

s2 = s4 = 2607530650α2 + 3125624158α− 3557840132,

s3 = 321096877176α2 + 384896014993α− 438120010876,

s6 = 1.

Thus ε is a root of the symmetric sextic polynomial

f(X) = X6−(231185α2 + 277121α− 315439)X5

+(2607530650α2 + 3125624158α− 3557840132)X4

−(321096877176α2 + 384896014993α− 438120010876)X3

+(2607530650α2 + 3125624158α− 3557840132)X2

−(231185α2 + 277121α− 315439)X + 1.

Over k, f(X) is irreducible, but f(X2) factors as g(X)g(−X), where

g(X) = X6−(213α2 + 256α− 292)X5

+(22930α2 + 27484α− 31286)X4

−(231611α2 + 277633α− 316021)X3

+(22930α2 + 27484α− 31286)X2

−(213α2 + 256α− 292)X + 1.
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(If we had worked with
√
ε instead, 40 decimal places of accuracy would be sufficient to

identify the symmetric functions of its Galois conjugates, and we would have found the
above polynomial directly.)

Now η =
√
ε+ 1/

√
ε is a root of the cubic polynomial

h(X) = X3 − (213α2 + 256α− 292)X2 + (22930α2 + 27484α− 31289)X

− (231185α2 + 277121α− 315437).

A root of this equation should define the ray class field modulo p over k. It behooves us
to find a simpler defining polynomial. Take the product of h(X) with its Q-conjugates to
get a degree 9 polynomial for η over Q:

X9 − 1297X8 + 135361X7 − 913746X6 − 4958790X5 − 2179354X4

+ 14965024X3 + 22396167X2 + 9433638X + 386839.

In Pari/GP, we compute a simpler defining polynomial for the field Q(η), which is

X9 − 3X8 − 8X7 + 32X6 − 14X5 − 32X4 + 24X3 + 4X2 − 6X + 1.

It is worth emphasizing that the corresponding calculation for the minimal polynomial of
ε+1/ε is dramatically more complex, because the height of the polynomial is much larger.
Over k, the 9-th degree polynomial above factors as a product of an irreducible cubic and
sextic, the cubic being

X3 − (α2 − 2)X2 + (α2 − 5)X + 1.

Let β be a root of this polynomial. The discriminant of the polynomial is (−2α2 + α +
16)2, which shows that the extension k(β)/k is Galois, cyclic of order 3. Moreover, it is
unramified outside of p: it is unramified at other finite places because they don’t divide
the discriminant, and unramified at archimedean places because it is a normal extension
of odd degree. This proves that k(β) is the ray class field modulo p, and the composite
field k(β,

√
α− 1) is K, the ray class field modulo p∞2∞3. Finally, the Stark unit is

ε =

(
a2β

2 + a1β + a0 +
(
b2β

2 + b1β + b0
)√

α − 1

2

)2

where the coefficients are
a2 = 31α2 + 37α− 42,

a1 = −15α2 − 18α+ 20,

a0 = −α2 − α,

b2 = 22α2 + 26α− 31,

b1 = 11α2 + 12α− 17,
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b0 = −18α2 − 20α+ 27.

The action of the Galois group is given by

σ(
√
α − 1) = −

√
α− 1 and σ(β) = β2 − (α2 − 2)β + (α2 − 4).

The numerical values of ε and its conjugates, under this action, all agree with the values
computed above, to within 10−66.

To complete the entire picture of fields involved, it remains to identify the field L.
There are three quadratic subfields of L/k; one is k(

√
α− 1), which is contained in K. For

either of the other two, its composite with K is L. They are unramified outside of S, so
it is straightforward to find them. We find that k(

√
2α2 − α− 16) is unramified outside

of S: it is unramified at 2, since (α2 + α + 1 +
√
2α2 − α− 16)/2 is an algebraic integer.

Therefore, this gives one of the quadratic fields, and the other is k(
√
−α2 − 7α+ 10), since

(α− 1)(2α2 − α − 16) = −α2 − 7α+ 10. Thus we have the following diagram of fields.

L=K(
√
2α2−α−16)
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√
α−1)
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