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Abstract. In 1966, Golomb showed that any polyomino which tiles a rectangle also tiles a larger copy of itself.
Although there is no compelling reason to expect the converse to be true, no counterexamples are known. In 3
dimensions, the analogous result is that any polycube that tiles a box also tiles a larger copy of itself. In this note,
we exhibit a polycube (a ‘notched cube’) that tiles a larger copy of itself, but does not tile any box, and obtain
several related results about tiling with this figure. We also obtain analogous results in all dimensions d ≥ 3.

Golomb [1] shows that any polyomino that tiles a rectangle also tiles a larger copy of itself. There is
no reason to expect that the converse holds; however, every polyomino that is known to tile a larger copy
of itself also tiles a rectangle. This is considered, for example, in [2, Problem 6.10]. We examine here the
corresponding question in higher dimensions.

Definitions. A cell in d-dimensional space R
d is a region

C(n1, n2, . . . , nd) = {(x1, x2, . . . , xd) ∈ R
d | ni ≤ xi ≤ ni + 1 for i = 1, 2, . . . , d}

where n1, n2, . . . , nd are integers. A (d-dimensional) polycube is a finite union of cells, whose interior is
connected. A (d-dimensional) box is a subset of Rd which is congruent to

{(x1, x2, . . . , xd) ∈ R
d | 0 ≤ xi ≤ ai for i = 1, 2, . . . , d}

for some positive a1, a2, . . . , ad. A (d-dimensional) orthant is a subset of Rd which is congruent to the
positive orthant

{(x1, x2, . . . , xd) ∈ R
d | xi ≥ 0 for i = 1, 2, . . . , d}.

A reptile is a figure that tiles a figure similar to itself, with ratio of similitude greater than 1. An N -reptiling
by a figure is a tiling of a larger figure similar to the original, which uses N tiles. A (d-dimensional) doublecell
is a region

Q(2n1, 2n2, . . . , 2nd) = {(x1, x2, . . . , xd) ∈ R
d | 2ni ≤ xi ≤ 2ni + 2 for i = 1, 2, . . . , d}

for some integers n1, n2, . . . , nd. Note that different doublecells do not share any cells.
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Definition. A (d-dimensional) notched cube is a polycube congruent to the closure of Q(0, 0, . . . , 0) r
C(1, 1, . . . , 1), i.e. the polycube which is the union of the 2d − 1 cells

{C(n1, n2, . . . , nd) | each ni = 0 or 1, and some ni = 0}.

d = 2 d = 3

Figure 1. Notched cubes.

Some previous authors [3, 4] considered tilings of Rd by translates only of a notched cube. Here we allow
rotations as well as translations; reflections are redundant.

Proposition 1. The (d-dimensional) notched cube has a unique 2d-reptiling.

Proof. We must tile the region X consisting of cells

{C(n1, n2, . . . , nd) | each ni = 0, 1, 2 or 3, and some ni = 0 or 1}.

There are 2d − 1 of these cells in which each ni is either 0 or 3. No tile can cover more than one of these
cells, so each is covered by a different tile. Each of these 2d − 1 tiles must then be contained in a doublecell.
There is one remaining tile to be used, and it must cover one cell of each doublecell of X . Thus it must
cover the cells

{C(n1, n2, . . . , nd) | each ni = 1 or 2, and some ni = 1},

and this forces the orientation of the remaining tiles. This gives the unique reptiling. �

Proposition 2. Any (d-dimensional) polycube reptile covers at least one corner of its bounding box. Any

reptiling by such a polycube can be placed in the corner of the positive orthant in such a way that the tiling

can be extended to a tiling of the positive orthant.

Proof. We refer the reader to [1, Theorem 5], for Golomb’s proof of this result in two dimensions, which
easily generalizes. �

Example. The 2d-reptiling constructed in Proposition 1 sits in the corner of the orthant in the same
orientation as the individual tile that occurs in the corner. We may consider this as an extension of the
individual tile in the corner to a 2d-reptiling. Since this 2d-reptiling occurs in the same orientation, we may
extend this to a 4d-reptiling, which also occurs in the same orientation. This can be further extended to an
8d-reptiling, and so forth. The union of these reptilings is a tiling of the positive orthant. We will prove
below (Theorem 1) that this is the unique tiling of the positive orthant by notched cubes, if d ≥ 3.
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Proposition 3. Let d ≥ 3, and suppose that the positive orthant of Rd is tiled by notched cubes and solid

cubes of edge length 2. Then each doublecell completely contains one of the tiles. Equivalently, the 2d cells

of each doublecell are partitioned either [[2d − 1, 1]] or [[2d]] among different tiles.

Proof. We prove this first for d = 3, and then proceed by induction.

Let d = 3 and suppose that the Proposition is false. Then some doublecell has an invalid partition, i.e.
other than [[7, 1]] or [[8]]. Among such doublecells, consider one, Q = Q(n1, n2, n3), which is closest to the
origin, in the sense that n1+n2+n3 is minimal. Let A,B,C,D,E, F,G and H be the eight cells in Q, where
A = C(n1, n2, n3) is the cell closest to the origin, and the others are as indicated in Figure 2.

A

B

C
D

E

F
G

Figure 2. The doublecell Q.

Claim 1. The tile that covers cell A does not cover any other cells of Q.

Consider the tile that covers cell A; it covers either 1, 2, 3, 4, 7 or 8 cells of the doublecell. If this number
is 7 or 8, then the partition is valid, contrary to hypothesis. If this number is 4, say the tile covers cells
A,B,G and C, then the tile covers 3 or 4 cells of the doublecell adjacent to Q through face ABGC. But
that doublecell is closer to the origin than Q is, and it has an invalid partition, contradiction. Similarly, if
the number of cells is 3 or 2, then we have a closer doublecell with an invalid partition summand (4 or 2),
again a contradiction. This proves Claim 1.

Note also that the bounding box of the tile that covers A does not contain cell B. If it did, then the
tile would necessarily be a notched cube, and it would cover 2 cells from each of three adjacent doublecells.
These doublecells are closer than Q, so this is a contradiction. Similarly the bounding box of the tile does
not contain cell C or cell D.

Claim 2. The tile that covers cell B covers at least one other cell of the doublecell Q.

Suppose, to the contrary, that it covers no other cells of Q. If its bounding box contains either A,F or
G, then the tile covers 2 cells from either the doublecell adjacent through face ABFD or the doublecell
adjacent through face ABGC. These are both closer than Q, so this is a contradiction. Thus, its bounding
box contains one cell in each of 8 different doublecells. The tile then contains 1 cell in at least two of the
three doublecells which share edge AB. The same is also true for the tile that covers A, so at least one of
these three closer doublecells has two summands of 1 in its partition. This contradiction proves Claim 2.

Similarly, the tile that covers cell C covers at least one other cell of Q, and the same for the tile that
covers D.

Claim 3. Cells B and C are covered by different tiles.
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If they were covered by the same tile, it would necessarily be a notched cube, and would also cover G.
Then it either covers the remaining 4 cells of Q, or 4 cells of the doublecell adjacent through face ABGC.
In the first case, the partition for Q is [[7, 1]], which is valid, contrary to hypothesis. In the second case, the
adjacent doublecell is a closer one with an invalid partition, a contradiction. This proves Claim 3.

Similarly, cells C and D are covered by different tiles, and the same for cells D and B. Therefore these
three cells are covered by different tiles, and each of these three tiles covers at least 2 cells of Q. Since
1 + 2 + 3 + 3 > 8, at least two of these tiles cover exactly 2 cells of Q. Up to symmetry, there are two
possibilities for these two tiles.
Case 1. One tile covers B and F , and the other covers C and E. Then the tile that covers D cannot cover
any other cells of Q, which contradicts Claim 2.
Case 2. One tile covers B and F , and the other covers C and G. Then the first tile covers either 1 or
2 cells of the doublecell adjacent through face ADFB. This is a closer doublecell, so the tile covers only 1
of its cells. Similarly, the second tile covers 1 cell of the doublecell adjacent through face ABGC. However,
the tile that covers A covers 1 cell of either (or both) of these adjacent doublecells. Therefore, one of these
closer doublecells has two summands of 1, and thus has an invalid partition, a contradiction.

This completes the proof for d = 3.

Now suppose that the Proposition holds in d − 1 dimensions. Consider a tiling of the positive orthant
of Rd by notched cubes and solid cubes of edge length 2, and let Q(2n1, 2n2, . . . , 2nd) be a doublecell. By
intersecting the tiling with the hyperplane defined by xd = 2nd +

1
2 , we get a tiling of a (d− 1)-dimensional

orthant by (d − 1)-dimensional notched cubes and (d − 1)-dimensional solid cubes of edge length 2. The
induction hypothesis implies that some tile covers at least 2d−1−1 cells of the (d−1)-dimensional doublecell
Q(2n1, 2n2, . . . , 2nd−1). The corresponding d-dimensional tile is bounded by either

xd = 2nd − 1 and xd = 2nd + 1

or by
xd = 2nd and xd = 2nd + 2

In the first case, intersect with the hyperplane xd−1 = 2nd−1+
1
2 . The resulting tile covers exactly 2d−2 cells

from some (d− 1)-dimensional doublecell, which contradicts the induction hypothesis. Therefore the second
case holds, and thus the original d-dimensional doublecell completely contains this tile. This shows that the
Proposition holds in d dimensions, which completes the induction. �

Proposition 4. If d ≥ 3, then any tiling of the positive orthant of Rd by notched cubes occurs from a tiling

by 2d-reptilings of the notched cube. Also, the tile that covers the cell in the corner, C(0, 0, . . . , 0) occurs in

the orientation that does not cover the cell C(1, 1, . . . , 1).

Proof. Each notched cube that is not contained in a single doublecell covers one cell in each of 2d − 1
different doublecells. For each such notched cube, consider that tile, along with the notched cubes that cover
the remaining 2d−1 cells of these doublecells. These 2d notched cubes cover all the cells of 2d−1 doublecells,
and no other cells. Thus, they form a 2d-reptiling of the notched cube. Furthermore, the reptilings formed
this way are disjoint (contain no common cells), and they tile the positive orthant. This proves the first
statement. For the second statement, note that any orientation of the 2d-reptiling in the corner of the orthant
induces the required orientation of the notched cube in that corner. �

Our desired results now follow quickly.

Theorem 1. If d ≥ 3, then there is a unique tiling of the positive orthant by notched cubes.

Proof. From Proposition 4, any tiling of the orthant by notched cubes is induced from a tiling by
2d-reptilings, which is induced from a tiling by 22d-reptilings, and so forth. Furthermore, for each k,
the 2kd-reptiling in the corner of the orthant occurs in the orientation described in Proposition 4. This
2kd-reptiling is a union of 2(k−1)d-reptilings, so their positions are uniquely determined, from Proposition 1.
Each of the 2(k−1)d-reptilings is a union of 2(k−2)d-reptilings, so their positions are also uniquely determined,
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and so on. Therefore, for each k, the tiling of the 2kd-reptiling in the corner of the orthant is uniquely
determined. The union of these 2kd-reptilings, for k = 1, 2, . . . is the tiling of the entire orthant, so it is
uniquely determined. �

This shows that the only tiling of the orthant by notched cubes is the one described in the Example above.

Theorem 2. If d ≥ 3, then there is an md-reptiling of the notched cube if and only if m is a power of 2.
Furthermore, if m is a power of 2, there is a unique md-reptiling.

Proof. We argue by induction on m. The result is trivial for m = 1. Let m > 1, and suppose the Theorem
holds for all integers less than m. Suppose there is an md-reptiling. From Proposition 2, the reptiling occurs
in the corner of the positive orthant for some tiling of the orthant. It is easy to see that if m > 1 is odd,
then any placement of an md-reptiling of the notched cube covers exactly 2d−1 cells from some doublecell.
From Proposition 3, such an md-reptiling cannot be extended to a tiling of the orthant.

Thus m = 2n is even. The reptiling can be placed in the corner of the orthant so that it can be extended
to a tiling of the orthant. Any orientation of the md-reptiling in the corner covers either all or none of the
cells from a given doublecell. Therefore, as in the proof of Proposition 4, the md-reptiling is the union of
2d-reptilings. These reptilings, nd in number, form an nd-reptiling of the notched cube. From the induction
hypothesis, n is a power of 2, whence m = 2n is also. Furthermore, the nd-reptiling is unique, from the
induction hypothesis. Since the 2d-reptiling is unique (Proposition 1), so is the md-reptiling. This completes
the induction. �

Theorem 3. If d ≥ 3, then the notched cube does not tile any box.

Proof. Suppose to the contrary, that it tiles an n1×n2×· · ·×nd box. These boxes tile an N ×N×· · ·×N

cube, where N = n1n2 · · ·nd, which in turn tile an Nd-reptiling of the notched cube. However, N =
n1n2 · · ·nd is divisible by 2d − 1, so it isn’t a power of 2, which contradicts Theorem 2. �

It might be worthwhile to mention what happens in 2 dimensions. In this case, the notched cube is the L
tromino. The L tromino tiles a 2 × 3 rectangle and it has m2-reptilings for all m; they are unique only for
m = 1 and m = 2. It also tiles a quadrant in uncountably many different ways. The question remains open
— to prove or disprove the existence of a (2-dimensional) reptile polyomino which does not tile a rectangle.
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