
Published in L’Enseignement Mathématique 49 (2003), no. 1–2, pp. 123–155.

TILE HOMOTOPY GROUPS
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Abstract. The technique of using checkerboard colorings to show impossibility of some
tiling problems is well-known. Conway and Lagarias have introduced a new technique using

boundary words. They show that their method is at least as strong as any generalized coloring

argument. They successfully apply their technique, which involves some understanding of
specific finitely presented groups, to two tiling problems. Partly because of the difficulty in

working with finitely presented groups, their technique has only been applied in a handful of
cases.

We present a slightly different approach to the Conway-Lagarias technique, which we hope

provides further insight. We also give a strategy for working with the finitely presented groups
that arise, and we are able to apply it in a number of cases.

1. Introduction

A classical problem is the following (see [3, pp. 142, 394], [7]).

Remove two diagonally opposite corners from a checkerboard. Dominoes are placed on
the board, each covering exactly two (vertically or horizontally) adjacent squares. Can all
62 squares be covered by 31 dominoes?
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Figure 1.1.  Mutilated checkerboard
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The key to the solution is to note that each domino covers one black square and one
red square, whereas the “mutilated checkerboard” has 32 squares of one color and 30 of
the other color. Therefore we see that it cannot be tiled.

A smaller version of this problem uses a mutilated 4×4 checkerboard. For this problem,
exhaustive analysis is easy; there are two ways to cover the marked square. In the first
case, this forces the location of the next 3 dominoes, and isolates a square that cannot be
covered. In the second case, the next 5 dominoes are forced, again isolating a square that
cannot be covered.

A similar exhaustive analysis can be applied to the mutilated 8× 8 checkerboard, but
it is dramatically more cumbersome. The elegance of this approach may be questionable,
but its validity is fine.

This is the type of problem we will consider in this paper. We will have a finite set
T of polyomino prototiles, and a finite region we are trying to tile with T . There is no
restriction on the use of tiles in T ; we may use any tile repeatedly, or we may fail to utilize
any given tile. We will be interested in negative results, where we can show that the region
cannot be tiled. In light of the remarks above concerning exhaustive search, we will be
especially interested in techniques that can prove that infinitely many such regions are
untileable. (Although the example of the mutilated checkerboard is only a single shape, it
is clear that the same technique applies to infinitely many regions.)

To fix ideas, we will mainly focus on the following type of tiling problem. Our pro-
toset will be a small set of polyominoes, and we’ll be interested in tiling rectangles with
the set. The same techniques work with little modification for protosets consisting of
“polyiamonds” or “polyhexes”.

Another typical example is the following. Can 25 copies of the shape cover a
10 × 10 square? (The tiles may be rotated and/or reflected.) Again, the answer is “no”.
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Figure 1.2.  Analysis of mutilated  4 × 4  checkerboard.   (a) First cell to cover.

(b) Two ways to cover it.   (c) Both cases force a contradiction.
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Label the squares in alternate rows by 1 and 5, as shown.

Then every placement of a tile covers either one 1 and three 5’s, or one 5 and three 1’s.
In either case, the total it covers is a multiple of 8. However, the 10× 10 square covers a
total of 300, which is not a multiple of 8, so the square cannot be tiled.

Although the 10× 10 square is a single shape, and thus can be exhaustively examined,

this same numbering argument shows that cannot tile any rectangle whose area is

congruent to 4 modulo 8. See [8] [10] [11, pp. 42–43] for this example. We will show below
(Proposition 2.10) that this type of argument can always be done by a suitable numbering
of the squares.

2. Tiling and Integer Programming

Here we translate a polyomino tiling problem into an algebra question. Consider, for
example, the problem of tiling the fairly simple shape

by dominoes. For each possible tile placement, we introduce a variable, xi, which indicates
how many times that placement occurs in the tiling.

1 1 1 1 1 1 1 1 1 1

5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1

5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1

5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1

5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1

5 5 5 5 5 5 5 5 5 5

Figure 1.3.  10 × 10  square.

Figure 2.1.  Region to tile with dominoes.
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In particular, its value will be either 0 or 1. Each cell of the region gives a linear equation,
which indicates that the cell is covered exactly once. Thus, for the example of Figure 2.1,
we get the system of linear equations

x1 + x6 = 1
x3 + x6 = 1

x1 + x2 + x7 = 1
x3 + x4 + x7 + x8 = 1

x5 + x8 = 1
x2 + x9 = 1

x4 + x9 + x10 = 1
x5 + x10 = 1

(2.3)

A tiling then corresponds to a solution to the system above. However, the converse is
not true; as noted above, the value of each variable must be either 0 or 1. A solution to
the system in which every variable takes the value 0 or 1 indeed corresponds to a tiling.

Instead of making this requirement on the variables, it is sufficient (and perhaps more
natural) to insist only that the values are non-negative integers. A linear system, such as
(2.3) above, in which the coefficients are non-negative integers, where we seek solutions in
non-negative integers, is one form of the integer programming problem. It is known that
the general integer programming problem is NP-complete, see [16]. It has also been shown
that the general problem of tiling a finite region by a set of polyominoes is NP-complete,
see [6] [12].

Linear Algebra and Signed Tilings

If we relax the condition that the variables take non-negative values, we have a more
tractable, although somewhat different problem. Indeed, it is simply a linear algebra
problem, albeit over Z, but its resolution by row-reduction is straightforward.

A solution to (2.3) in integers, possibly negative, corresponds to a “signed tiling”, i.e.
where tiles may be subtracted from the region. Equivalently, we can think of allowing

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

Figure 2.2.  Possible tile placements and associated variables.
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“anti-tiles”. Again however, we do not quite have a one-to-one correspondence, because a
signed tiling may utilize cells outside the region. Thus it is appropriate to consider all the
cells of the square lattice when considering signed tilings.

Tile Homology Groups

Following Conway and Lagarias, we define the tile homology group of a protoset T . Let
A be the free abelian group on all the cells of the square lattice. To a placement of a tile
in T , we associate the element of A which is 1 in those coordinates whose cell is covered
by the tile placement, and is 0 in all other coordinates. Note that this element depends
upon the particular placement of the tile. In the same way, to a region, we also associate
an element of A. Again, this element depends upon the location and orientation of the
region. For simplicity, we will consider a region to be a fixed subset of the square lattice.

2.4. Definition. The tile homology group of T is the quotient H(T ) = A/B(T ), where
B(T ) ⊆ A is the subgroup generated by all elements corresponding to possible placements
of tiles in T .

The relevance of the tile homology group is clear. A region R has a tiling by T if and
only if the element corresponding to R is in the submonoid of A generated by elements
corresponding to tile placements, and it has a signed tiling if and only if the corresponding
element is in B(T ). Thus H(T ) measures the obstruction to having a signed tiling by T .

We introduce some conventions that will be useful. The cell with lower left corner at
the point (i, j) we be called simply the (i, j) cell. We let aij denote the element of A
corresponding to this cell, and let āij denote its image in H(T ).

The tile homology group is defined by infinitely many generators and infinitely many
relations. In this form, it is somewhat difficult to use. In a number of simple cases, we can
show that it is finitely generated.

2.5. Example. T = { }, both orientations allowed. H(T ) is defined by

Generators: āij i, j ∈ Z

Relations: āij + āi+1,j = 0 i, j ∈ Z

āij + āi,j+1 = 0 i, j ∈ Z

Note that we have

which shows that āij − āi+1,j−1 = 0 in H(T ). Similarly, by rotating this figure by 90
degrees, we obtain āij − āi+1,j+1 = 0. These show that H(T ) is generated by the two

- = +
-

Figure 2.6.  Translation of a square by  1  diagonal unit.
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elements ā00 and ā01. Now the relations above collapse into a single relation between these
two generators: ā00 + ā01 = 0. Thus we see that H(T ) ∼= Z, and a specific isomorphism
is given by [R] 7→ (b− r), where the region R has b black squares and r red squares. This
shows that a region has a signed tiling by dominoes if and only if it has the same number
of black squares as it has red squares.

2.7. Example. T = { }, all rotations and reflections allowed. From the equation

we see that āij = āi+2,j, and similarly, we have āij = āi,j+2. Thus H(T ) is generated by
ā00, ā01, ā10 and ā11. The relations become

2ā00 + ā01 + ā10 = 0
ā00 + 2ā01 + ā11 = 0
ā00 + 2ā10 + ā11 = 0

ā01 + ā10 + 2ā11 = 0

so we easily find that H(T ) ∼= Z × Z/4Z. A specific isomorphism is given by [R] 7→
(A − B − C + D, (2A + B − C) mod 4), where the region R contains A [respectively,
B,C,D] (i, j) cells with i and j both even [respectively, i even and j odd, i odd and j
even, i and j both odd]. From this analysis, we can easily find the numbering used in
Figure 1.3 above.

In general, the tile homology group will not be finitely generated. A simple example
that illustrates this is the following.

2.9. Example. Let T = { }. It is easy to show that H(T ) is a free abelian group

on the generators which are images of all (i, j) cells with i = 0 or j = 0. In particular,
H(T ) is not finitely generated.

We now show that the types of proofs given in the examples of the introduction can
always be given using a suitable numbering of the cells of the square lattice.

2.10. Proposition. Let R be a region that does not have a signed tiling by the protoset
T . Then there is a numbering of all the cells in the square lattice with rational numbers
such that

(1) Any placement of a tile covers a total that is an integer, and
(2) The total covered by the region is not an integer.

Proof. Let r ∈ H(T ) be the image of the region R in the tile homology group, which
by hypothesis, is non-trivial. Let 〈r〉 ⊆ H(T ) be the cyclic subgroup generated by r. Note

- = + -

Figure 2.8.  Translation of a square by  2  units.
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that there is a homomorphism ϕ : 〈r〉 → Q/Z with ϕ(r) 6= 0. For example, if r has infinite
order, then ϕ may be defined by ϕ(r) = 1

2
mod Z, while if r has finite order, n > 1, then we

may take ϕ(r) = 1
n
mod Z. Now Q/Z is a divisible abelian group, so the homomorphism ϕ

extends to a homomorphism H(T ) → Q/Z, also called ϕ, which is defined on all of H(T ).

Since A is a free abelian group, the composite map A։ A/B(T ) = H(T )
ϕ

−→Q/Z lifts to
a homomorphism ψ : A→ Q, such that the following square commutes

A
ψ

//

��
��

Q

��
��

H(T )
ϕ

// Q/Z

where the vertical arrows are the natural projections. Then ψ defines a numbering of the
squares with rational numbers. Moreover, B(T ) is in the kernel of A→ Q/Z, which means
that every tile placement covers an integral total. Also, R covers a total that is not an
integer, because ϕ(r) 6= 0. �

2.11. Remark. In many cases that we have examined, H(T ) is finitely generated, so
that ϕ(H(T )) ⊆ Q/Z is also finitely generated, whence ϕ(H(T )) ⊆ 1

N
Z/Z for some integer

N . In such cases, it seems convenient to clear denominators by multiplying everything by
N . We thus obtain a numbering of the squares by integers, such that

(1′) Any placement of a tile covers a total divisible by N , and
(2′) The region covers a total that is not divisible by N .

This shows that generalized checkerboard coloring arguments such as in [10, Thm. 6]
can be given in a simpler form. We provide a numbering proof of Klarner’s result, which
is based upon his coloring.

2.12. Proposition. Let T = { }, with all orientations allowed. If T tiles a

rectangle, then its area is divisible by 16.

Proof. We must show that T cannot tile a (2m+ 1) × (16n + 8) rectangle or a (4m +
2)× (8n+ 4) rectangle. Number the squares by

(i, j) 7→






5 if i ≡ 0 mod 4,
−3 if i ≡ 2 mod 4, and
1 if i is odd.

Then each tile covers a total of either 0 or 16, depending on its placement. In particular,
it always covers a multiple of 16. However, a (2m+1)× (16n+8) rectangle covers a total
that is congruent to 8 modulo 16, and so does a (4m+ 2)× (8n+ 4) rectangle. �

2.13. Remark. Proposition 2.12 uses a single numbering to show that both types of
rectangles cannot be tiled. In general, one may need several different numberings to show
that several regions cannot be tiled.

2.14. Remark. It is not hard to show that we can translate a square by 4 units, and
then it is straightforward to calculate that H(T ) ∼= Z5 × (Z/4Z).
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3. Boundary Words

In this section, we describe the boundary word method of Conway and Lagarias. This
is a non-abelian analogue of tile homology, although that may not be immediately clear
from the construction!

We must make an important assumption here. Our prototiles must be simply connected.
We also assume that they have connected interior, although this condition can be relaxed
in some cases. Such a tile has a boundary word, obtained by starting at a lattice point
on the boundary, and traversing the boundary. For definiteness, we will always traverse in
the counterclockwise direction. A unit step in the positive x [respectively, y] direction is
transcribed as an x [respectively, y]. A step in the negative x [respectively, y] direction is
transcribed as x−1 [respectively, y−1].

3.1. Example. Consider the following hexomino with the indicated base point.

Its boundary word is xyxyx−2yx−1y−3x. We note that the boundary word depends upon
(1) the choice of base point, and
(2) the particular orientation of the tile.

With regard to (1), a different base point gives rise to a conjugate boundary word.
Condition (2) forces us to use translation-only tiles; therefore if we want to allow rotations
and/or reflections, we must explicitly include each valid orientation in our protoset. This
is actually advantageous, because we may use this to restrict the orientations that occur,
for example, to forbid reflections of a tile. We will do this in one example below.

The significance of boundary words is the relationship between the boundary word of
a region and the boundary words of the tiles that occur in a tiling. This is given by the
following (note that our statement is slightly stronger than that given by Conway and
Lagarias).

3.3. Theorem. (Conway-Lagarias) Suppose that the simply connected region R is tiled
by T1, T2, . . . , Tn, one copy of each. Then a boundary word of R can be written as

wR = w̃1w̃2 · · · w̃n

where w̃i is conjugate to a boundary word of Ti, this being an identity in the free group
on the generators x and y.

x y x y x−2 y x−1 y−3 x

Figure 3.2.  Example of boundary word.
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Proof. We argue by induction on n. The case n = 1 is trivial. So suppose that n > 1,
and that the theorem holds for all simply connected regions tiled by fewer than n tiles. Fix
a tiling of R by T1, T2, . . . , Tn, and consider one of the tiles, T , that meets the boundary
of R. Suppose it meets the boundary along k ≥ 1 segments, some of which may be
isolated points. Removing T from the region results in a new region with k components,
R1, R2, . . . , Rk, some of which may touch at a corner. We label the boundary word of
each Ri as v

−1
i ui , where ui is the word along the part of the boundary shared with R,

and vi is along the part shared with the boundary of the tile T . Let t1, t2, . . . , tk be the
words along the segments where T meets the boundary of R. Then we may take for a
boundary word of R the element wR = t1u1t2u2 · · · tkuk. A boundary word for T is then
wT = t1v1t2v2 · · · tkvk. (In Figure 3.4, t2 is the empty word.)

Thus we have

wR = wT w̃R1
w̃R2

· · · w̃Rk
(3.5)

where each w̃Ri
= (ti+1vi+1ti+2vi+2 · · · tkvk)

−1(v−1
i ui )(ti+1vi+1ti+2vi+2 · · · tkvk) is a con-

jugate of the boundary word of Ri. The induction hypothesis applies to each Ri, and each
tile occurs precisely once in T and the tilings of the Ri’s. Thus (3.5) implies that

wR = wσ(1)wσ(2) · · ·wσ(n)

where σ is a permutation of {1, 2, . . . , n}, and wi is conjugate to a boundary word of Ti.
It is easy to show that this implies that wR = w̃1w̃2 · · · w̃n where each w̃i is conjugate to
wi. This completes the induction and the proof. �

An immediate consequence is the following.

3.6. Corollary. Suppose that x and y are elements of a group G, such that the boundary
word of every tile in T is the identity element of G. If a (simply connected) region can be
tiled by T , then its boundary word also gives the identity element of G. �

T R1

R2

R3

t1

(t2)t3

u1

u2

u3 v1

v2

v3

Figure 3.4.  Decomposition of tiling.
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3.7. Remark. The converse of Corollary 3.6 is false in general, even if G is taken to be
the “largest” group in which the boundary words of all tiles in T are trivial. This is due
to the non-abelian analogue of signed tilings (see Corollary 6.6 below).

3.8. Example. T = { , }, allowing all orientations. Torsten Sillke asked

if these two polyominoes could tile any rectangle whose area is not a multiple of 3. The
next result shows that the answer to his query is “no”.

3.9. Theorem. If T = { , } tiles a rectangle, then one side is divisible
by 3.

Proof. First note that it suffices to prove that T cannot tile any rectangle both of whose
dimensions are congruent to 1 modulo 3. For if T tiles a (3m+2)×(3n+1) rectangle, then
two of these tilings may be juxtaposed to give a tiling of a (6m+ 4)× (3n+ 1) rectangle.
Similarly, if T tiles a (3m+2)× (3n+2) rectangle, then it also tiles a (6m+4)× (6n+4)
rectangle. Thus we need only show that T cannot tile any (3m+1)×(3n+1) rectangle. Let
x be the 3-cycle (1, 2, 3) ∈ S5, and let y be the 3-cycle (3, 4, 5). Then we easily check that
x3yx−3y−1 = xy3x−1y−3 = xyxyx−1yx−1y−1x−1y−1xy−1 = 1, so the boundary words of
all tiles are trivial. However, the boundary word of a (3m + 1) × (3n + 1) rectangle is
x3m+1y3n+1x−(3m+1)y−(3n+1) = (2, 3, 5), so it cannot be tiled. �

3.10. Remark. A 1× 1 square has a signed tiling by T , so the tile homology technique
cannot prove this result.

3.12. Remark. One might suspect that every rectangular tiling by T uses only
the straight tromino. If this were the case, then the theorem would be somewhat less
interesting, and a proof could be given by a checkerboard type argument. However, a
10× 15 rectangle has a tiling by T which actually uses the X pentomino.

+ - =

Figure 3.11.  Signed tiling of a  1 × 1  square.

Figure 3.13.  10 × 15  rectangle.
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3.14. Question. Is there a rectangular tiling by T that uses exactly 3 X pentominoes?

Theorem 3.9 shows that the number of X ’s in a rectangular tiling must be a multiple
of 3. The tiling of Figure 3.13 has 6 X ’s and the following tiling has 9.

From the tilings in Figures 3.13 and 3.15, it is easy to construct rectangular tilings with
3n X ’s, for any n ≥ 2.

4. Tile Homotopy Groups

We establish some notation. Let P be the free group on generators x and y. We may
think of elements of P as paths on the square lattice. For a protoset T , let Z(T ) be the
smallest normal subgroup of P that contains all boundary words of tiles in T . Corollary
3.6 strongly suggests the following definition.

4.1. Definition. The tile path group of T , denoted P (T ), is the quotient group P/Z(T ).

Corollary 3.6 says that if a region R has a tiling by T , then its boundary word is trivial
in the tile path group. However, it may be difficult to work with the tile path group
directly. Theorem 3.9 above uses a representation of the tile path group to show that the
boundary word of a (3m+ 1)× (3n+ 1) rectangle is non-trivial.

4.2. Notation. From now on, we will use x and y to denote the free generators of P ,
and x̄, ȳ to denote their images in P (T ).

The tile path group turns out to be “too big” in a sense. Let C ⊆ P be the subgroup
of closed words, i.e. those words that correspond to a closed path. (For the square lattice,
this is simply the commutator subgroup of P ; for other lattices it won’t necessarily be so.)
It is clear that C is indeed a subgroup, and is normal in P . Also, since every boundary
word is a closed word, we have Z(T ) ⊆ C. Now we have the insightful definition of Conway
and Lagarias.

Figure 3.15.  10 × 21  rectangle, with  9  X  pentominoes.
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4.3. Definition. The tile homotopy group of T is the quotient π(T ) = C/Z(T ).

The relevance of this group is two-fold. Firstly, we are interested in the boundary word
of a region, modulo Z(T ). Since every boundary word is closed, only elements of π(T )
need to be considered. Secondly, there is a strong connection between the tile homotopy
group and the tile homology group, which we now examine.

Relation between Tile Homotopy and Tile Homology

To understand the tile homotopy group, we first seek an understanding of the group C
of closed words. This is a subgroup of the free group P , so the following classical result
of Nielsen and Schreier is relevant. See [9, Chapter 7, Section 2] for more about this. We
sketch its proof, because we are interested in producing an explicit set of free generators
of C.

4.4. Theorem. Any subgroup of a free group is also free.

Proof. (Sketch) Let G be a free group and let H ⊆ G be a subgroup. Then G is the
fundamental group of a bouquet of circles, X , one circle for each generator. Subgroups
of G are in one-to-one correspondence with (connected) covering spaces of X . Thus H
corresponds to a covering space Y → X , where elements of H are exactly those closed
paths on X that lift to closed paths on Y , and the fundamental group of Y is precisely
H. Since Y is a graph (i.e. a 1-dimensional CW complex), the proof is finished by the
following proposition.

4.5. Proposition. The fundamental group of a graph is free.

Proof. (Sketch) Let Γ be a graph, T ⊆ Γ a spanning tree, and {eα} the set of edges
in the complement of T . Suppose also that the edges eα are equipped with a favored
orientation. Then one shows that π1(Γ) is free on generators {gα} which are in bijective
correspondence to the edges {eα}. The generator gα is the class of the path defined as
follows. First, traverse a path inside the tree T from the basepoint to the initial endpoint
of the edge eα, then cross the edge eα, and finally, return to the basepoint through the tree
T . It is easy to show that the gα’s generate π1(Γ); that they form a set of free generators
is a consequence of Van Kampen’s theorem. �

By examining the details of this proof, we can identify a free generating set for the
group of closed words, C. Firstly, P is the fundamental group of a bouquet of 2 circles,
X . It is easy to identify the covering space corresponding to C, this is simply the skeleton
of the square lattice in the plane, call it Y . Of course, there is no canonical choice of
spanning tree of Y , nor does there seem to be a “best” choice. We will use the spanning
tree consisting of all horizontal edges along the x-axis, and all vertical edges. For the
edges in the complement, we choose their favored orientation to be right to left, as shown
in Figure 4.6.
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Thus we see that C is a free group on the generators

bij = xi+1yjx−1y−jx−i for i ∈ Z, j ∈ Z r {0} .

However, it seems better to use a different set of free generators. We will use the following
set.

4.7. Proposition. C is a free group on the generators cij = xiyjxyx−1y−1y−jx−i, over
all i, j ∈ Z.

Proof. We just saw that C is freely generated by the elements bij = xi+1yjx−1y−jx−i

for i ∈ Z and j ∈ Z r {0}. Therefore we can express each cij uniquely as a word in the
bij ’s; the explicit expression is

cij =






bi1 if j = 0,
b−1
i,−1 if j = −1,

b−1
ij bi,j+1 otherwise.

(4.8)

We can also express the bij ’s in terms of the cij ’s; we get

bij =

{
ci0ci1ci2 · · · ci,j−1 if j > 0,

c−1
i,−1c

−1
i,−2c

−1
i,−3 · · · c

−1
ij if j < 0.

(4.9)

Therefore the cij ’s generate C. Now we must show freeness. Let G be any group, and for
i, j ∈ Z, let gij be any element of G. We must show that there is a unique homomorphism
ϕ : C → G with ϕ(cij) = gij for all i, j. Expression (4.9) shows that any such ϕ must
satisfy

ϕ(bij) =

{
gi0gi1gi2 · · · gi,j−1 if j > 0,

g−1
i,−1g

−1
i,−2g

−1
i,−3 · · · g

−1
ij if j < 0.

(4.10)

Since the bij ’s are free generators, there is a unique homomorphism ϕ : C → G satisfying
(4.10). Then equation (4.8) shows that indeed ϕ(cij) = gij for all i, j. This shows that the
cij ’s are free generators, which completes the proof. �

Figure 4.6.  Spanning tree.
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The significance of the cij ’s is that cij has winding number 1 around the (i, j) cell and
has winding number 0 around all other cells. Now we are in good position to understand
the relation between tile homotopy and tile homology.

4.11. Theorem. (Conway-Lagarias) The abelianization of the tile homotopy group of
T is its tile homology group.

Proof. We have π(T )ab = (C/Z(T ))ab ∼= Cab/(image of Z(T )). As C is free on the
generators cij , C

ab is a free abelian group on the images of these generators. The generators
are in bijective correspondence with the cells of the square lattice, so we may think of Cab

as the free abelian group on these cells. It remains to determine the image of Z(T ) under
this identification. Z(T ) is generated by all P -conjugates of boundary words of tiles in
T . A typical such generator has the form uwu−1, where u ∈ P is arbitrary, and w is a
boundary word of a tile. This corresponds to a closed path (thus an element of C), so it
may be written uniquely as a word in the cij ’s. To understand its image in Cab, we need
to know the total weight with which each cij occurs. However, this weight is simply the
winding number around cell (i, j), and the winding number is either 1 or 0, depending
upon whether the cell occurs in the tile placement or not. Thus the image of uwu−1 is the
element in the free abelian group on cells that corresponds to this particular tile placement.
Now we see that π(T )ab ∼= Cab/(image of Z(T )) ∼= A/B(T ), which is the tile homology
group. �

Hidden behind the scenes is a topological space, which we now bring to the forefront.
Let Y be the skeleton of the square lattice, which we have seen in Figure 4.6. Note that
Y → X is a normal covering map, where X is a bouquet of two circles, and the group of
deck transformations is Z2, acting via translations of the square lattice.

From Y , we build a new space, called Y (T ), by sewing in a 2-cell into every possible
tile placement. This is a covering space for X(T ), which is constructed in a similar way.
Namely, we sew in the boundary of a 2-cell along the path corresponding to each boundary
word of a tile in T . (Technically, we must sew in a cell for every possible boundary word,
where all possible base points are considered.) Then Y (T ) → X(T ) is also a normal
covering map, again whose group of deck transformations is Z2 acting via translations of
the square lattice. Moreover, the restriction to Y is the covering map Y → X .

The fundamental group of X(T ) is the tile path group P (T ), and the covering space
Y (T ) corresponds to the subgroup π(T ) ⊆ P (T ). The first homology group of Y (T ) is
the tile homology group, H(T ). Thus Theorem 4.11 can be considered as a special case of
the Hurewicz Isomorphism Theorem.

5. Strategy for working with Tile path groups

We have shown above how to translate tiling problems into problems in finitely presented
groups, so we might hope to be able to resolve such questions. Unfortunately, the situation
is grim. The so-called word problem, as well as many related problems, is known to be
unsolvable, which means that no algorithm can answer the question for all possible values
of the input.
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This is not the end of our story, for we are not trying to solve every word problem. We
might hope, however optimistically, that the word problems that arise for us can be solved,
whether by hook or by crook. The algorithmic unsolvability of these problems should serve
to temper any optimism that we can muster.

The tile homotopy method has been successfully applied in several cases, see [2, Exercise
for Experts] [4] [13] [14]. Despite these efforts, results have been found in only a handful of
cases. In this section, we give a simple strategy for understanding tile homotopy groups,
which allows many new cases to be handled. In view of the difficulty in working with
finitely presented groups, we understand that our approach cannot be algorithmic, nor can
we expect to be able to apply it in all cases. Nonetheless, we are able to use our strategy
to handle numerous new cases.

The tile path group for a finite set T of prototiles is given by a finitely presented group.
We are more interested in the tile homotopy group, which is a subgroup of infinite index.
The infiniteness of this index is unfortunate, in light of the following well-known result.

5.1. Proposition. If G is a finitely generated [respectively, finitely presented] group,
and H ⊆ G is a subgroup of finite index, then H is also finitely generated [respectively,
finitely presented]. �

The usual proof uses covering space theory, similar to the determination of the group,
C, of closed paths above. Moreover, in the finitely presented case, a presentation of H
can be computed explicitly. We will do this later, with the help of the computer software
package GAP [5]. There is plenty of interesting combinatorial group theory involved in
this, but it is well understood, so it is not our place to discuss it here.

If the index (G : H) is not finite, then H can fail to be finitely generated. A typical
example exhibiting this behavior is the case C ⊆ P that we saw earlier.

In general, the tile homotopy group will not be finitely generated. However, in some
special cases, it will be. The method of demonstrating this is a non-abelian analogue of
the technique for showing finite generation of the tile homology group, as in Examples 2.5
and 2.7. In order to achieve this, we need to find some relations in the tile path group.

5.2. Theorem. Suppose that x̄m and ȳn are central in P (T ), for some positivem and n.

Then the natural map P (T ) ։ P̃ (T ) = P (T )/〈x̄m, ȳn〉 induces an isomorphism of π(T )

onto its image, π̃(T ). Moreover, π̃(T ) has index mn inside P̃ (T ) and it is generated by
the images of the elements c̄ij = x̄iȳj x̄ȳx̄−1ȳ−1ȳ−j x̄−i for 0 ≤ i < m and 0 ≤ j < n.

Proof. Note that π(T ) is normal in P (T ), with quotient P (T )/π(T ) ∼= P/C ∼= Z2. This
quotient is the group of translations of the grid, so x̄ and ȳ map to rightward and upward
translation by 1 unit each. Let N = 〈x̄m, ȳn〉 ⊆ P (T ), which, by hypothesis, is central
in P (T ). Now N maps injectively to P (T )/π(T ), whence N and π(T ) intersect trivially.

Thus π(T ) maps injectively to P (T )/N = P̃ (T ). This proves the first statement. Next,

note that P̃ (T )/π̃(T ) ∼= P (T )/Nπ(T ) ∼= Z2/〈image of x̄m, ȳn〉 ∼= (Z/mZ)× (Z/nZ). This

shows that the index (P̃ (T ) : π̃(T )) = mn, as claimed. Finally, we recall that π(T ) is
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generated by the elements c̄ij over all i, j ∈ Z. Since x̄m is central in P (T ), we see that
c̄ij = c̄i+m,j , and c̄ij = c̄i,j+n, because ȳ

n is also central. The last statement is then clear.
�

Theorem 5.2 is an important tool for calculating tile homotopy groups. We revisit an
example (3.8) we had seen earlier.

5.3. Theorem. The tile homotopy group of T = { , } has order 120, and
it is a central extension of A5 by Z/2Z.

Proof. The tile path group has the presentation

P (T ) = 〈x, y | x3yx−3y−1, xy3x−1y−3, xyxyx−1yx−1y−1x−1y−1xy−1〉.

The relators show that x̄3 and ȳ3 are central in P (T ). Let P̃ (T ) = P (T )/〈x̄3, ȳ3〉 =

〈x, y | x3, y3, xyxyx−1yx−1y−1x−1y−1xy−1〉. Then the projection P (T ) ։ P̃ (T ) induces
an isomorphism of π(T ) onto its image π̃(T ), which has index 9 in the finitely presented

group P̃ (T ). Thus we can compute a presentation of π̃(T ). In this particular instance, we

have an even better situation, because the group P̃ (T ) turns out to be finite, and therefore

π̃(T ) is also finite. In fact, GAP quickly tells us that |P̃ (T )| = 1080, so that π(T ) has
order 120, and its structure can be completely determined. �

The utility of Theorem 5.2 depends on the ability to find relations in the tile path group.
It is known that this cannot be done algorithmically, but in some cases, it is easy to find
the necessary relations. In Theorem 5.3, it was trivial to find them. In the next theorem,
the relations are not quite as obvious.

5.4. Theorem. Let T = { }, with all orientations allowed.

(a) The tile homotopy group π(T ) is solvable. Its derived series is π(T ) = G0 ⊇ G1 ⊇
G2 ⊇ G3 = {1}, with quotients G0/G1 = π(T )ab = H(T ) ∼= Z×(Z/3Z), G1/G2

∼= (Z/2Z)2

and G2/G3 = G2
∼= Z/2Z. Moreover, these isomorphisms can be given explicitly.

(b) If T tiles an m× n rectangle, then (at least) one of m or n is a multiple of 4.
(c) A 2× 3 rectangle has a signed tiling by T .

Proof. We first claim that x̄12 and ȳ12 are central in P (T ). Consider the two tilings
shown in Figure 5.5.

The first shows that x̄3 commutes with ȳ2x̄ȳ2, and the second shows that x̄4 commutes with
ȳ2x̄ȳ. Therefore, x̄12 commutes with both ȳ2x̄ȳ2 and ȳ2x̄ȳ, and thus also with ȳ. Hence

Figure 5.5.  Two small tilings.
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x̄12 is central in P (T ), and similarly, ȳ12 is also central. Let P̃ (T ) = P (T )/〈x̄12, ȳ12〉.

Theorem 5.2 shows that π(T ) maps isomorphically onto its image in P̃ (T ), with finite
index. Now we can compute a presentation of π(T ), using GAP. We obtain

G0 = π(T ) ∼= 〈z1, z2 | z2z1z2z1z2z
−2
1 , z1z

2
2z

−1
1 z−2

2 〉,

where the generators are z1 = x̄−1ȳx̄ȳ−1 and z2 = ȳ2x̄ȳ−2x̄−1. From this, we find that

H(T ) = π(T )ab ∼= Z× (Z/3Z).

There are two different ways we can make this isomorphism explicit. Firstly, we can express
the image of each cij in terms of z1 and z2, and then use the explicit presentation of π(T )
above. However, it is much easier to compute H(T ) directly. We have

which shows how we can translate a square 3 units to the right and 1 unit up. By consider-
ing all 8 orientations of this relation, we find that we can translate a square by 1 diagonal
unit. Now it is easy to see that H(T ) ∼= Z×(Z/3Z) is given by [R] 7→ (b−r, (b+r) mod 3),
where the region R contains b black squares and r red squares in the usual checkerboard
coloring.

Next we compute the commutator subgroup G1 = [G0, G0]. We cannot do this di-
rectly, because it has infinite index in G0. However, we can utilize the same technique
as in Theorem 5.2 above. The first relator implies that z31 = (z2z1)

3. Therefore, z31
commutes with z2z1, and hence is central in G0. Now let N = 〈z31〉 ⊆ G0. We see
that N maps injectively to Gab

0 = G0/G1, so that G1 maps injectively to G0/N =

〈z1, z2 | z31 , z2z1z2z1z2z
−2
1 , z1z

2
2z

−1
1 z−2

2 〉. Moreover, its image has index 9 in G0/N . Now
GAP can compute a presentation of G1; it tells us that

G1
∼= 〈a1, a2 | a21a

2
2, a1a2a1a

−1
2 〉,

where a1 = z2z1z
−1
2 z−1

1 and a2 = z2z
−1
1 z−1

2 z1. Also, G1 is easily seen to be a finite group
(quaternion of order 8). Thus the rest of (a) can be readily verified.

(b) It suffices to show that T cannot tile any (4m+2)×(4n+2) rectangle. Having already
completely determined the structure of the tile homotopy group, we content ourselves with
a representation proof. Define ϕ : P (T ) → S32 by

ϕ(x̄) = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)(17, 18, 19, 20)
(21, 22, 23, 24)(25, 26, 27, 28)(29, 30, 31, 32)

ϕ(ȳ) = (1, 4, 32, 20)(2, 12, 7, 17)(3, 24, 23, 11)(5, 16, 15, 21)(6, 13, 27, 18)
(8, 22, 10, 28)(9, 19, 29, 25)(14, 31, 30, 26)

- =
-

+

Figure 5.6.  Translating a square  3  units to the right and  1  unit up.
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It is straightforward to check that this indeed gives a homomorphism; one only needs to
verify that the boundary words of all eight orientations are in the kernel of ϕ. We also
note that ϕ(x̄4m+2ȳ4n+2x̄−(4m+2)ȳ−(4n+2)) is non-trivial, so a (4m+2)×(4n+2) rectangle
cannot be tiled by T .

(c) This follows from the explicit isomorphism H(T ) ∼= Z× (Z/3Z) given above. Also,
an explicit signed tiling is easy to give, based upon Figure 5.6 above. �

We remark that these computations depend upon the correctness of the computer pro-
gram. If a proof of non-tileability relies on this computation, it may be advantageous to
give a certificate of proof , namely a homomorphism P (T ) → G to a group in which we
can compute easily. Having done that, the representation proof can be easily verified, and
is less susceptible to error.

5.7. Theorem. Let T = { , }, with all orientations allowed.

(a) The tile homotopy group of T has order 32 and is a central extension of (Z/2Z)4 by
Z/2Z.
(b) The tile homology group, H(T ) ∼= (Z/2Z)4, and a specific isomorphism is given as
follows. Suppose that the region R covers X0 [respectively, X1, X2] cells with x-coordinate
congruent to 0 mod 3 [respectively, 1 mod 3, 2 mod 3]. Also, suppose that R covers Y0
[respectively, Y1, Y2] cells with y-coordinate ≡ 0 mod 3 [respectively, 1 mod 3, 2 mod 3].
Then a specific isomorphism H(T ) ∼= (Z/2Z)4 is given by

[R] 7→ ((X0 +X1) mod 2, (X1 +X2) mod 2, (Y0 + Y1) mod 2, (Y1 + Y2) mod 2).

(c) If T tiles an m× n rectangle, then mn is even.
(d) A 3× 3 square has a signed tiling by T .

Proof. (a) We first claim that x̄6 is central in P (T ). Consider the two tilings below.

They show that

ȳ−2x̄4ȳ2x̄ȳx̄−6ȳ−1x̄ = 1 and ȳ−2x̄4ȳ2x̄−4 = 1,

so that x̄ȳx̄−6ȳ−1x̄ = x̄−4. This shows that x̄6 commutes with ȳ and therefore is central.

Similarly, ȳ6 is central in P (T ). Now let P̃ (T ) = P (T )/〈x̄6, ȳ6〉. Theorem 5.2 shows

that π(T ) maps isomorphically onto its image in P̃ (T ), and it has index 36. We can now
compute

π(T ) ∼= 〈z1, z2, z3, z4 | z21 , z
2
2 , z

2
3 , z

4
4 , (z1z2)

2z24 , (z1z3)
2z24 , (z2z3)

2z24 , (z1z4)
2, (z2z4)

2, (z3z4)
2〉

Figure 5.8.  Two small tilings.
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where z1 = ȳx̄ȳ−1x̄−1, z2 = ȳx̄−1ȳ−1x̄, z3 = x̄ȳx̄ȳ−1x̄−2 and z4 = ȳ2x̄ȳ−2x̄−1. We can
easily check that this group is finite, and its structure can be completely determined. In
fact, the relators make it clear that z24 is central, has order 2, generates the commutator
subgroup, and the quotient π(T )/〈z24〉 is an elementary abelian 2-group of rank 4.

(b) We show how we can translate a square by 3 units.

Now a straightforward computation, similar to Examples 2.5 and 2.7, shows that H(T ) ∼=
(Z/2Z)4, and the isomorphism is as claimed.

(c) We must show that T cannot tile a (2m + 1) × (2n + 1) rectangle, so it suffices to
show that T cannot tile a (6m + 3) × (6n + 3) rectangle. We use a representation proof.
Define a homomorphism ϕ : P (T ) → S48 by

ϕ(x̄) = (1, 13, 11, 12, 10, 16)(2, 41, 34, 25, 38, 31)(3, 42, 35, 26, 39, 32)(4, 40, 36, 27, 37, 33)
(5, 20, 46, 6, 23, 43)(7, 19, 17, 48, 22, 14)(8, 28, 9, 29, 45, 30)(15, 44, 21, 18, 47, 24)

ϕ(ȳ) = (1, 27, 30, 12, 10, 23, 29, 18, 11, 8, 28, 31)(2, 13, 14, 46, 4, 44, 43, 45, 3, 25, 15, 40)
(5, 20, 24, 35, 9, 21, 41, 34, 33, 19, 16, 36)(6, 26, 39, 22, 47, 42, 38, 17, 48, 32, 37, 7)

It is straightforward to verify that this indeed defines a homomorphism. Furthermore, we
easily check that ϕ(x̄6m+3ȳ6n+3x̄−(6m+3)ȳ−(6n+3)) is non-trivial, so a (6m+ 3)× (6n+ 3)
cannot be tiled by T .

(d) This follows from the isomorphism H(T ) ∼= (Z/2Z)4 given in part (b). Also, it is
easy to give an explicit one, based upon Figure 5.9. �

5.10. Remark. The tilings in Figure 5.8 and the argument involved essentially amount
to “untiling” two square tetrominoes from the left figure. This is the non-abelian analogue
of a signed tiling. Since the boundary word of the 1 × 6 rectangle is trivial in P (T ),
Theorem 5.7 remains true even if this rectangle is included in the protoset T . We can also

show that the hexomino has such a “generalized tiling” by T , so this shape may

also be included in T , and Theorem 5.7 remains valid.

We give one more example.

5.11. Theorem. Let T = { }, where rotations are allowed, but reflections are
prohibited.
(a) The tile homotopy group, π(T ), is a central extension of Z4 by Z/2Z. In particular,
it is solvable.

- = + -

Figure 5.9.  Translating a square by  3  units.



20 MICHAEL REID

(b) The tile homology group is H(T ) ∼= Z4, and an explicit isomorphism is given as
follows. Suppose that the region R covers n0 [respectively, n1, n2, n3, n4] cells (i, j) with
2i + j ≡ 0 mod 5 [respectively, 1 mod 5, 2 mod 5, 3 mod 5, 4 mod 5]. Then an explicit

isomorphism H(T )
∼=
−→Z4 is given by [R] 7→ (n1 − n0, n2 − n0, n3 − n0, n4 − n0).

(c) If T tiles an m× n rectangle, then mn is even.

(d) A 1× 5 rectangle has a signed tiling by T .

Proof. (a) Note that T tiles a 2 × 5 rectangle, which implies that x̄2 commutes with
ȳ5. Similarly, x̄5 commutes with ȳ2. Therefore, x̄10 commutes with ȳ and thus is central
in P (T ). In the same way, ȳ10 is also central in P (T ), so we can compute a presentation
of π(T ), using Theorem 5.2. We obtain a presentation for π(T ) with 5 generators: z1 =
x̄ȳx̄−1ȳ−1, z2 = ȳx̄−1ȳ−1x̄, z3 = x̄−1ȳ−1x̄ȳ, z4 = ȳ−1x̄ȳx̄−1 and w = z1z2z

−1
1 z−1

2 . The
relations are w2 = 1, wzi = ziw for 1 ≤ i ≤ 4, and zizjz

−1
i z−1

j = w for 1 ≤ i < j ≤ 4. The

relations show that w is central in π(T ) and that the quotient π(T )/〈w〉 is isomorphic to
Z4. Furthermore, w has order 2, and it generates the commutator subgroup of π(T ). This
proves (a).

(b) Note that we have

so that āij = āi+2,j+1 in H(T ). Similarly, we have āij = āi−1,j+2, so H(T ) is generated
by ā00, ā10, ā20, ā30 and ā40. Furthermore, the relations collapse into a single relation:
ā00 + ā10 + ā20 + ā30 + ā40 = 0. Thus H(T ) ∼= Z4, and the isomorphism is as claimed.

(c) It suffices to show that T cannot tile a (10m+ 5) × (10n + 5) rectangle. We use a
representation proof. Define a homomorphism ϕ : P (T ) → S64 by

ϕ(x̄) = (1, 2, 4, 47, 16, 27, 41, 54, 56, 9)(3, 6, 12, 11, 34, 50, 62, 61, 49, 58)
(5, 10, 19, 32, 24, 36, 31, 37, 42, 55)(7, 14, 23, 28, 43, 57, 52, 40, 38, 46)(8, 59)
(13, 21, 35, 51, 20, 15, 25, 17, 18, 30)(22, 33, 48, 60, 64, 26, 39, 53, 63, 44)(29, 45)

ϕ(ȳ) = (2, 3, 5, 9, 17, 28, 42, 12, 14, 22)(4, 7, 13, 6, 20)(8, 25, 37, 11, 33)
(10, 18, 29, 44, 58)(15, 24, 30, 46, 57, 63, 62, 48, 54, 47)(16, 26, 38, 50, 61)
(19, 31, 39, 45, 21, 34, 49, 51, 59, 64)(27, 40)(32, 36, 52, 35, 41)(43, 56, 60, 55, 53)

As usual, it is straightforward to verify that ϕ indeed defines a homomorphism, and that
ϕ(x̄10m+5ȳ10n+5x̄−(10m+5)ȳ−(10n+5)) is non-trivial.

(d) This follows from the explicit isomorphism H(T )
∼=
−→Z4 given above. Alternatively,

it is easy to give a signed tiling, based upon Figure 5.12. �

- =
-

+

Figure 5.12.  Translating a square  2  units to the right and  1  unit up.
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6. Criteria for π(T ) to be abelian

In many cases that we have examined, the tile homotopy group turns out to be abelian.
In such cases, the tile homotopy group gives no further information than the tile homology
group, which is generally more accessible. We give here two general criteria which imply
that π(T ) is abelian.

6.1. Theorem. Suppose that the set of prototiles T is rotationally invariant.
(a) If x̄ commutes with x̄ȳx̄−1ȳ−1 in P (T ), then π(T ) is cyclic, and its order is the
greatest common divisor of the sizes of tiles in T . If d is this greatest common divisor,

then a specific isomorphism π(T )
∼=
−→Z/dZ is given by [γ] 7→ N mod d, where the loop γ

encloses N squares, counting multiplicity.
(b) If x̄ȳ commutes with x̄ȳx̄−1ȳ−1 in P (T ), then π(T ) is abelian. Let H ⊆ Z2 be the
subgroup generated by all elements of the form (b, r) and (r, b), where there is a tile in T
with b black squares and r red squares. Then π(T ) ∼= Z2/H, and a specific isomorphism
is given by [γ] 7→ (B,R) mod H, where the loop γ encloses B black squares and R red
squares, counting multiplicity.

Proof. (a) A 90◦ clockwise rotation corresponds to mapping x and y to y−1 and x
respectively. Since T is invariant under this rotation, this map induces an automorphism
of P (T ). Thus ȳ−1 commutes with ȳ−1x̄ȳx̄−1, and therefore also with x̄ȳx̄−1ȳ−1. Now
x̄ȳx̄−1ȳ−1 is central in P (T ). We have seen that π(T ) is generated by the elements
c̄ij = x̄iȳj x̄ȳx̄−1ȳ−1ȳ−j x̄−i, and our commutativity relations show that these are all equal
to c̄ = x̄ȳx̄−1ȳ−1. Thus π(T ) is generated by a single element, c̄, and therefore is cyclic.

Let w ∈ C be the boundary word of a tile in T , which imposes a relation upon P (T ).
Then w can be written uniquely as a word in the elements cij . The total weight in an
individual cij is the winding number around square (i, j), which is either 1 or 0, according
to whether or not that square is in the tile. Thus the total weight in all the cij ’s is the
size of the tile. Therefore, w imposes the relation c̄n = 1 on π(T ), where n is the size of
the tile. The remainder of the statement is now clear.

(b) Since x̄ȳ commutes with x̄ȳx̄−1ȳ−1, so does x̄−1ȳ−1. A 90◦ clockwise rotation shows
that ȳ−1x̄ commutes with ȳ−1x̄ȳx̄−1, and conjugating by ȳ shows that x̄ȳ−1 commutes with
x̄ȳx̄−1ȳ−1. Now we see that both x̄2 = (x̄ȳ−1)(x̄−1ȳ−1)−1 and ȳ2 = (x̄−1ȳ−1)−1(x̄ȳ−1)−1

also commute with x̄ȳx̄−1ȳ−1. Next, π(T ) is generated by the elements c̄ij . Our com-
mutativity relations show that c̄ij = c̄00 if i + j is even, while c̄ij = c̄10 if i + j is odd.
Moreover, these two elements commute with each other, because c̄00 = x̄ȳx̄−1ȳ−1, and
c̄10 = (x̄2)(x̄ȳ−1)−1(x̄ȳ)−1.

Let w ∈ C be the boundary word of a tile in T , which may be written uniquely as
a word in the elements cij . The total weight in those cij ’s with i + j even [respectively,
odd] is the number of black [respectively, red] squares in this placement of the tile. Thus
w imposes the relation c̄ b00c̄

r
10 = 1 on π(T ), and the relation c̄ r00c̄

b
10 = 1 comes from the

boundary word xwx−1. The statement now follows. �

It may be useful to reformulate Theorem 6.1 in a different way. We will consider the
following self-intersecting closed paths to depict “generalized tiles” that have boundary
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words xyx−1y−1x−1yxy−1 and xyx−1y−2x−1yx respectively.

Now Theorem 6.1 may be rephrased as follows.

6.3. Theorem. Suppose that rotations are allowed in our protosets.

(a) The tile homotopy group of T = { } is isomorphic to Z, and a specific isomorphism

is given by [γ] 7→ N , where the loop γ encloses N squares, counting multiplicity.

(b) The tile homotopy group of T = { } is isomorphic to Z2, and a specific

isomorphism is given by [γ] 7→ (B,R), where the loop γ encloses B black squares and R
red squares, counting multiplicity. �

Conway and Lagarias mention the protoset T = { }, with all orientations allowed.

They remark that Walkup [17] has shown that if an m × n rectangle can be tiled by T ,
then both m and n are multiples of 4. They also note that a rectangle has a signed tiling
by T if and only if its area is a multiple of 8. They implicitly ask what the relationship
between Walkup’s proof and the tile homotopy method is. Theorem 6.1 above allows us
to compute the tile homotopy group of T .

6.4. Proposition. The tile homotopy group of T = { } is Z/8Z. A specific

isomorphism is given by [γ] 7→ (B+5R) mod 8, where the loop γ encloses B black squares
and R red squares, counting multiplicity.

Proof. The boundary words of the orientations

give the relations ȳ−1x̄ȳx̄ȳx̄−3ȳ−1x̄ = 1 = ȳ−1x̄ȳx̄ȳx̄−1ȳx̄−1ȳ−2 in P (T ). Therefore,
x̄−2ȳ−1x̄ = ȳx̄−1ȳ−2, which is equivalent to x̄ȳ commuting with x̄ȳx̄−1ȳ−1. Now part (b)
of Theorem 6.1 shows that π(T ) ∼= Z2/〈(1, 3), (3, 1)〉 ∼= Z/8Z, and the specific isomorphism
is as claimed. �

Figure 6.2.  Generalized tiles.

Figure 6.5.  Two orientations of the  T  tetromino.
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6.6. Corollary. The boundary word of a rectangle is trivial in π({ }) if and only

if its area is divisible by 8. �

This shows that Walkup’s proof is unrelated to tile homotopy; his proof relies on subtle
geometric restrictions that are not detected by the tile homotopy group.

Another example that exhibits a similar phenomenon in a more obvious manner is the
following.

6.7. Example. Let T = { }, with all orientations allowed. Comparing the two

orientations

shows that x̄ commutes with x̄ȳx̄−1ȳ−1 in the tile path group. Then Theorem 6.1(a) shows
that π(T ) ∼= Z/9Z. This means that the tile homotopy group only detects area, modulo 9.

On the other hand, we can easily show that if T tiles a rectangle, then both sides must
be even. Consider the ways that a tile can touch the edge of a rectangle.

We see that the first two possibilities cannot occur, so each tile that touches the edge does
so along an even length. Therefore, each edge of the rectangle has even length. In fact,
it is not much harder to show that if T tiles an m × n rectangle, then both m and n are
multiples of 6. A straightforward argument shows that every tiling of a quadrant by T is
a union of 6× 6 squares, which implies the result.

7. Appendix: Further examples

Here we give some more tiling restrictions we have found using the tile homotopy tech-
nique. In each case, there are signed tilings that show that the result cannot be obtained
by tile homology methods, and there are tilings that show that the result is non-vacuous.
Further details will be published elsewhere.

Figure 6.8.  Two orientations of a tile.

Figure 6.9.  Tiles along an edge of a rectangle.
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7.1. Theorem. Let T = { }, where all orientations are allowed.

(a) If T tiles an m× n rectangle, then either m or n is a multiple of 4.
(b) A 1× 6 rectangle has a signed tiling by T .

7.2. Theorem. Let T = { , }, where all orientations are allowed.

(a) If T tiles an m× n rectangle, then mn is a multiple of 4.
(b) A 1× 6 rectangle has a signed tiling by T .

7.3. Theorem. Let T = { }, where rotations are permitted, but reflections are

not.
(a) If T tiles an m× n rectangle, then mn is even.
(b) A 1× 5 rectangle has a signed tiling by T .

7.4. Remark. It is easy to show that if T tiles a rectangle, then both sides are multiples
of 5. Also, Yuri Aksyonov [1] has given a clever geometric proof that one side must be a
multiple of 10.

7.5. Theorem. Let T = { , , , }, where all orientations are

allowed.
(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 4.
(b) A 1× 2 rectangle has a signed tiling by T .

7.6. Theorem. Let T = { , , , , , , }, where all

orientations are allowed.
(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 4.
(b) A 1× 2 rectangle has a signed tiling by T .

7.7. Theorem. Let

T = { , , , , , , , , , , },

where all orientations are allowed.
(a) If T tiles an m× n rectangle, then mn is a multiple of 4.
(b) A 1× 2 rectangle has a signed tiling by T .

7.8. Theorem. Let T = { , }, where all orientations are allowed.

(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 6.
(b) A 2× 2 square has a signed tiling by T .
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7.9. Theorem. Let T = { , }, where all orientations are allowed.

(a) If T tiles an m× n rectangle, then either m is a multiple of 3 or n is a multiple of 6.
(b) A 1× 1 square has a signed tiling by T .

7.10. Theorem. Let T = { , , }, where all orientations

are allowed.
(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 8.
(b) A 1× 1 square has a signed tiling by T .

7.11. Theorem. Let T = { , , }, where all orientations are

allowed.
(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 5.
(b) A 1× 1 square has a signed tiling by T .

7.12. Theorem. Let T = { , }, where all orientations are allowed.

(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 4.
(b) A 1× 2 rectangle has a signed tiling by T .

7.13. Theorem. Let T = { , , }, where all orientations are allowed.

(a) If T tiles an m× n rectangle, then mn is a multiple of 4.
(b) A 1× 2 rectangle has a signed tiling by T .

7.14. Theorem. Let T = { , , }, where all orientations are

allowed.
(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 6.
(b) A 1× 1 square has a signed tiling by T .

7.15. Theorem. Let T = { , , }, where all orientations

are allowed.
(a) If T tiles an m× n rectangle, then one of m or n is a multiple of 6.
(b) A 2× 3 rectangle has a signed tiling by T .

7.16. Theorem. Let T = { }, where all orientations are allowed.

(a) If T tiles a triangle of side n, then n is a multiple of 8.
(b) A triangle of side 4 has a signed tiling by T .

7.17. Remark. That T tiles any triangle is quite interesting. Karl Scherer [15, 2.6 D]
has found a tiling of a side 32 triangle by T .
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