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0. Introduction

In 1973, D. R. Woodall [3] showed that there is a 2-coloring of Q 2 (the rational points in
the plane) that forbids the distance 1 (i.e. no two points of the same color are at distance
1 apart). Recently, this result was strengthened by P. D. Johnson, Jr. [2], who showed
there is a 2-coloring of Q 2 that simultaneously forbids all Euclidean distances of the form
√

p/q with p and q odd positive integers. Johnson’s 2-coloring obviously forbids certain

other distances (e.g.
√

6) because no two rational points in the plane are precisely that far
apart. We show in Section 1 that Johnson’s coloring is optimal: for any distance d not
covered by either of these two cases, no 2-coloring of Q 2 forbids both of the distances 1
and d (see Theorem 1.5). This settles Problem 4 of [2]. In Section 2, we give a similar
solution of Problems 2 and 3 of [2].

1. Two-colorings of Q 2

Definition. Let D ⊆ R+. A 2-coloring of Q 2 forbids the distances D if for all x, y ∈ Q 2,
with d(x, y) ∈ D, the two points x and y have different colors.

Definition. For any D ⊆ R+, we say there is an odd D-cycle (in Q 2) if there exist
s1, s2, . . . , sn ∈ Q 2 such that s1 + s2 + · · · + sn = 0 (under componentwise addition),
||si|| ∈ D for each i, and n is odd. (Not having an odd D-cycle means a certain subset of
Q 2 is “weakly two-free” in the language of [1, 2].)

The following lemma follows from the fact that a graph is bipartite iff it contains no
odd cycle.
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Lemma 1.1. (cf. [1]) Let D ⊆ R+. There is no 2-coloring of Q 2 that forbids D iff there

is an odd D-cycle.

Lemma 1.2. (cf. [2, Lemma 1]) Let d ∈ R+ and set d′ = kd, where k is any odd positive

integer. Then there is an odd {1, d}-cycle iff there is an odd {1, d′}-cycle.

Proof. (⇒) Suppose u1 + u2 + · · · + ul + s1 + s2 + · · · + sm = 0, with l + m odd, and
where ||ui|| = 1 for each i, and ||sj|| = d for each j. Setting s′j = k · sj, we have

k · u1 + k · u2 + · · ·+ k · ul + s′1 + s′2 + · · · + s′m = 0,

and kl + m is odd.
(⇐) Suppose u1 + u2 + · · ·+ ul + s′1 + s′2 + · · · + s′m = 0. Setting sj = 1

k
· s′j , we have

u1 + u2 + · · ·+ ul + k · s1 + k · s2 + · · · + k · sm = 0,

and l + km is odd. �

Proposition 1.3. Let p, q ∈ Z+, with p even and q odd, and assume d =
√

p/q occurs

as a distance between rational points in the plane. Then there is an odd {1, d}-cycle.

Proof. By Lemma 1.2 it suffices to show there is an odd {1, qd}-cycle. Since d occurs as a
distance, there are rational numbers α and β with α2 +β2 = pq. Any integer that is a sum
of two rational squares is a sum of two integer squares, so we may assume that α and β are
non-negative integers. Now α·(1, 0)+β·(0, 1)+(−α,−β) = 0, and ||(−α,−β)|| =

√
pq = qd.

Since α2 + β2 = pq is even, α and β have the same parity, so α + β + 1 is odd. �

Lemma 1.4. Let D ⊆ R+ and d0 ∈ R+. Assume d0 occurs as a distance between two

rational points in the plane. Then there is an odd D-cycle iff there is an odd (d0 ·D)-cycle

(where d0 · D = {d0d | d ∈ D}).
Proof. By assumption there are α, β ∈ Q with

√

α2 + β2 = d0. Then
(

α β
−β α

)

∈ GL2(Q)

is a linear transformation of the plane that preserves the set of rational points and expands
all distances precisely by a factor of d0. The lemma follows. �

Theorem 1.5. Let d ∈ R+. Assume there are x, y ∈ Q 2 with d(x, y) = d, and that d

can be written in the form d =
√

p/q with p, q ∈ Z+ and p + q odd. Then no 2-coloring of

Q 2 forbids both of the distances 1 and d.

Proof. By Lemma 1.1, we need only show there is an odd {1, d}-cycle in Q 2. By Lemma
1.4, there is an odd {1, d}-cycle iff there is an odd {1/d, 1}-cycle. So, replacing d by 1/d if

necessary, we may assume d =
√

p/q where p is even and q is odd. Then Proposition 1.3
applies. �

Corollary 1.6. Let D ⊆ R+. No 2-coloring of Q 2 forbids the distances D iff there are

d1, d2 ∈ D such that:

(1) Each of d1 and d2 occurs as a distance between rational points in the plane; and

(2) There exist p, q ∈ Z+ such that d1/d2 =
√

p/q and p + q is odd.
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2. Two-colorings of An and Q 3

Let An = {(a1/b1, a2/b2, . . . , an/bn) | ai, bi ∈ Z and each bi is odd }. We now prove the
natural analogue of Theorem 1.5 for An and for Q 3. This settles problems 2 and 3 of [2].

Proposition 2.1. Let p, q ∈ Z+, with p even and q odd. Set d =
√

p/q and assume there

are x, y ∈ An with d(x, y) = d. Then no 2-coloring of An forbids both of the distances 1
and d.

Proof. (cf. proof of Proposition 1.3) We need only show there is an odd {1, d}-cycle
in An (see Lemma 1.1). Write d2 = α2

1 + α2
2 + · · · + α2

n, where each αi is rational with
odd denominator. We may rescale in the manner of Lemma 1.2 to assume each αi is an
integer, so d2 is an even integer. Then

α1 · (1, 0, . . . , 0) + α2 · (0, 1, . . . , 0) + · · · + αn · (0, 0, . . . , 1) + (−α1,−α2, . . . ,−αn) = 0,

and α1 + α2 + · · ·+ αn + 1 is odd. �

Proposition 2.2. Let d ∈ R+. Assume there are x, y ∈ Q 3 with d(x, y) = d, and that d

can be written in the form d =
√

p/q with p, q ∈ Z+ and p + q odd. Then no 2-coloring of

Q 3 forbids both of the distances 1 and d.

Proof. We need only show there is an odd {1, d}-cycle in Q 3 (see Lemma 1.1). Write
p/q = α2

1 + α2
2 + α2

3 (with each αi ∈ Q).

Case 1. p is even and q is odd. It follows that α1, α2, α3 have odd denominators (when
written in lowest terms). Now apply the proof of Proposition 2.1.

Case 2. p is odd and q is even. At least one of α1, α2, α3 must have even denominator
(when written in lowest terms). Assume it is α1 = p1/q1. Note

p1 · (1, 0, 0) +
q1

2
· (−α1, α2, α3) +

q1

2
· (−α1,−α2,−α3) = 0,

and p1 + q1 is odd. �

Question. Is the analogue of Lemma 1.4 (and, hence, also the analogue of Corollary
1.6) true for An and Q 3?
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